

January 7, 2019

STRUCTURAL CALCULATIONS (Permit Submittal)

LUNDIN RESIDENCE

4041 West Mercer Way Mercer Island, WA 98040

Quantum Job Number: 18689.01

Prepared for: Stuart Silk Architects 2400 North 45th Street Seattle, Wa 98103

Prepared by: QUANTUM CONSULTING ENGINEERS 1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900 FAX 206.957.3901

1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900 FAX 206.957.3901

LUNDIN RESIDENCE

4041 WEST MERCER WAY MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 18689.01

TABLE OF CONTENTS

DESIGN CRITERIA	A-1
LATERAL DESIGN	B-1
GRAVITY DESIGN	C-1
FOUNDATION DESIGN	D-1
RETAINING WALL DESIGN	E-1

LUNDIN RESIDENCE

4041 West Mercer Way Mercer Island, WA 98040

Quantum Job Number: 18689.01

DESIGN CRITERIA

STRUCTURAL DESIGN CRITERIA

LUNDIN RESIDENCE 4041 WEST MERCER WAY MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 18689.01

CODE CRITERIA:	
BUILDING CODE	2015 INTERNATIONAL BUILDING CODE
BUILDING DEPARTMENT	CITY OF MERCER ISLAND
WIND CRITERIA	
SEISMIC ZONE	SDC = D
	SITE CLASS = D
	R - 65
	I = 10
	S = 1.41 $S = 0.55$
	$S_{1} = 0.001$
POOE SNOW (ADDITIONAL 5 DSE WET SNOW INCLUDED	30 pcc
FLOOD LIVE LOAD	
FLOUR LIVE LUAD	
	3 000 005
ALLOWABLE BEARING PRESSURE	
COEFFICIENT OF FRICTION (FACTOR OF SAFETY OF 1.5	INCLUDED)
MINIMUM FOOTING WIDTH CC	NTINUOUS: 18" MIN., ISOLATED: 24" MIN.
FROST DEPTH	
SOILS CONSULTANT	PANGEO INCORPORATED
SOILS REPORT NUMBER	
SOILS REPORT DATE	OCTOBER 12, 2018
ACTIVE SOIL PRESSURE (RESTRAINED / UNRESTRAINE	D)
SEISMIC SURCHARGE PRESSURE (RESTRAINED / UNR	ESTRAINED)
PASSIVE SOIL PRESSURE (FACTOR OF SAFETY OF 1.5 I	NCLUDED)
MATERIALS CRITERIA:	
CONCRETE (28 DAY STRENGTH):	
FOUNDATION/S.O.G.	F'C=2,500 PSI
	,
REINFORCING STEEL:	
GRADE 60 (#5 BAR OR LARGER)	FY=60.000 PSI
GRADE 40 (#4 BAR OR SMALLER)	FY=40 000 PSI
WOOD FRAMING:	
2X 3X & 4X FRAMING MBRS	HF#2 OR DF#2
6X FRAMING MBRS	DF#1
GLULAM REAMS	$24F_VA (V8 @ CONT AND CANT MRPS)$
	241-14 (10 ש נטונו. גונט נגונו. מוש גאין און און אין אין אין אין אין אין אין אין אין אי
I ANALLAIVI DLAIVIS	1 55 F 101
LOL WEWDERO - DEAWO & REAVERO	

A-2

STRUCTURAL DESIGN CRITERIA

LUNDIN RESIDENCE 4041 WEST MERCER WAY MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 18689.01

ASSEMBLY WEIGHTS

ROOF LOADS				COMMENTS
MEMBRANE ROOFING		1.0	PSF	
RIGID INSULATION		2.0	PSF	
5/8" SHEATHING		2.0	PSF	
ROOF JOISTS @ 16"O.C.		3.2	PSF	
INSULATION		1.0	PSF	
LIGHTS, DUCTS		1.0	PSF	
5/8" GWB		2.8	PSF	
MISCELLANEOUS		1.0	PSF	
PV PANELS		4.0	PSF	
	ROOF DL	18.0	PSF	SL = 30 PSF

FLOOR LOAD

HARDWOOD FLOORING 2-LAYERS OF 1/2 SHEATHING 2" GYPCRETE 3/4" SHEATHING FLOOR JOISTS @ 16"O.C. LIGHTS, DUCTS 5/8 GWB INSULATION MISCELLANEOUS		4.0 3.4 18.0 2.5 2.8 1.0 2.8 1.0 0.5	PSF PSF PSF PSF PSF PSF PSF PSF	
MISCELEANEOUS	FLOOR DL	36.0	PSF	LL = 40 PSF
GARAGE FLOOR LOAD				
4" TOPPING SLAB 1-1/8" PLYWOOD SHEATHING WOOD JOISTS @ 16"O.C. INSULATION 5/8" GWB LIGHTS, DUCTS MISCELLANEOUS		48.3 3.8 5.3 1.0 2.8 1.0 0.8 63.0	PSF PSF PSF PSF PSF PSF PSF	
	I LOOK DL	63.0	гэг	LL = 40 PSF

EXTERIOR WALL LOADS

WOOD SIDING		2.0	PSF
1/2" PLYWOOD SHEATHING		1.5	PSF
2X6 STUDS @ 16" O.C.		2.0	PSF
INSULATION		1.0	PSF
5/8" GWB		2.8	PSF
MISCELLANEOUS		1.7	PSF
	ROOF DL	11.0	PSF

INTERIOR WALL LOAD

5/8" GWB		2.8	PSF
2X6 STUDS @ 16" O.C.		1.7	PSF
INSULATION		1.0	PSF
5/8" GWB		2.8	PSF
MISCELLANEOUS		0.7	PSF
	WALL DL	9.0	PSF

TERRACE FLOOR LOAD

2" CONCRETE PAVERS ON PEDESTAI	LS	24.2	PSF	
WATER-PROOFING MEMBRANE		1.0	PSF	
3/4" PLYWOOD SHEATHING		2.5	PSF	
2X SLEEPERS @ 16" O.C.		1.2	PSF	
3/4" PLYWOOD SHEATHING		2.5	PSF	
DECK JOISTS @ 16" O.C.		2.8	PSF	
INSULATION		1.0	PSF	
LIGHTS, DUCTS		1.0	PSF	
5/8" GWB		2.8	PSF	
MISCELLANEOUS		1.0	PSF	
	FLOOR DL	40.0	PSF	LL = 60 PSF

▲ This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

ATC Hazards by Location

Search Information

Coordinates:	47.57302222, -122.239575
Timestamp:	2018-12-05T00:45:08.497Z
Hazard Type:	Wind

Map Results

Text Results

ASCE 7-16

_		
MRI 10-Year		68 mph
MRI 25-Year		74 mph
MRI 50-Year		79 mph
MRI 100-Year		83 mph
Risk Category	Ι	92 mph
Risk Category	И	98 mph
Risk Category	Ш	105 mph
Risk Category	IV	109 mph

ASCE 7-10

MRI 10-Year	72 mph
MRI 25-Year	79 mph
MRI 50-Year	85 mph
MRI 100-Year	91 mph
Risk Category I	100 mph
Risk Category II	110 mph
Risk Category III-IV	115 mph
Kzt = 1.0	

ASCE 7-05

ſ

Wind exp. "C"

ASCE 7-05 Wind Speed

Eureka Redding Lassen National Forest PY R A M ID LaKE PAIUTE

 $85 \, \text{mph}$

EUSGS Design Maps Summary Report

User-Specified Input

Report Title Seismic design parameters

Wed December 5, 2018 00:41:23 UTC

Building Code Reference Document 2012/2015 International Building Code (which utilizes USGS hazard data available in 2008)

Site Coordinates 47.57302°N, 122.23958°W

Site Soil Classification Site Class D - "Stiff Soil"

Risk Category I/II/III

USGS-Provided Output

\mathbf{S}_{s} =	1.410 g	S _{MS} =	1.410 g	S _{DS} =	0.940 g
S ₁ =	0.543 g	S _{м1} =	0.814 g	S _{D1} =	0.543 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

LUNDIN RESIDENCE

4041 West Mercer Way Mercer Island, WA 98040

Quantum Job Number: 18689.01

LATERAL CALCULATIONS

B-2

B-3

B-4

Wind Loads Criteria

Wind Load Criteria

Risk Category: Basic Wind Speed: Exposure Category: Wall Ht:	ll 110 C 29.5 ft	Table 1.5-1 Figure 26.5.1 Section 26.7.3	Ν	Roof Type: Roof Slope: /lean Roof HT: Parapet:	Flat Roof 0.0:12 28.0 ft Yes
<u>Wind Topographic Fa</u> per Section 26.8 Di	<u>ctor, K_{zt}</u>	Wind Lh		of Crest ind of Crest	
	H H/2			h	-
Terrain Type: Direction:		Per Local Jurisdie Upwind of Cre	ction st		
L _h : H: x: h:	200 ft 200 ft 50 ft 28.0 ft	DIST UPWIND OF CRES HT. OF HILL OR ESCAR DIST. (UPWIND OR DOW MEAN ROOF HT ABOVE	T TO HALF HT OF I P. RELATIVE TO TI (NWIND) FROM TH CLOCAL GROUND	HILL OR ESCARP. HE UPWIND TERRAIN E CREST TO THE BUIL LEVEL	DING
K _{zt} : K _{zt} :	NA <mark>1.00</mark>	EQUATION 26.8-1 MANUALLY INPUT			

	Quantum Consulting Engineers LLC	Project:	Lundin Residence	Date:	1/7/19	Job No:	18689.01
	1511 Third Avenue, Suite 323			Designer:	Qing	Sheet:	1
	Seattle, WA 98101	Client:	David & Jaymee	Checked By:	Sandro		

Wind Loads - Main Wind Force Resisting System

ASCE 7-10 Chapter 27 Part 2 - Enclosed Simple Diaphragm, h<160ft

Wind Load Criteria

FIGURE 27.5-1

Quantum Consulting Engineers LLC	Project:	Lundin Residence	Date: 1/7/19	Job No:	18689.01
1511 Third Avenue, Suite 323			Designer: Qing	Sheet:	2
Seattle, WA 98101	Client:	David & Jaymee	Checked By: Sandro		

Wind Loads - Main Wind Force Resisting System (Cont.)

ASCE 7-10 Chapter 27 Part 2 - Enclosed Simple Diaphragm, h<160ft

Table 27.6-2

Roof Overhang (PSF)

Povh: -20.2 psf

Figure 27.6-3

	Quantum Consulting Engineers LLC	Project:	Lundin Residence	Date:	1/7/19	Job No:	18689.01
	1511 Third Avenue, Suite 323			Designer:	Qing	Sheet:	3
	Seattle, WA 98101	Client:	David & Jaymee	Checked By:	Sandro		

1511 Th	ird Avenue, Suite 323	T. 206.957.3900				
Seattle, WA 98101		F. 206.957.3901				
Project	Lundin Residence		Job #	18689.01	Page	4
Client	David & Jaymee Lundin		Ву	Qing	Date	01/07/19
Subject	Wind Load		Checked	Sandro	Date	

Wind Forces (East-West): Roof Angle 0 ZONE AREA (SF) ZONE PRESSURE (PSF) LEVEL FORCE (K) 1 2 4 3 4 5 2 5 1 3 55.4 128.0 7.09 PARAPET UPPER 655.0 24.6 16.11 LOW ROOF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1159 23.75 27.53 MAIN BASE SHEAR: 50.73

	Wind Fo	orces (North	<u>i-South):</u>						Roof Angle	0]
]	ZONE AREA (SF)					ZONE PRESSURE (PSF)]	
LEVEL	1	2	3	4	5	1	2	3	4	5	FORCE (K)
HIGH ROOF	53.0			64.1				3.40			
UPPER			277.0			28.5				7.89	
LOW ROOF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
MAIN			479					27.7			13.27
									BASE S	HEAR:	24.56

Seismic Base Shear for the Equivalent Lateral Force Procedure Per IBC 2015 & ASCE 7-10

Structure: Lundin Resi	donco					
Address: 4041 West	uence Iorcor Way	Moreor Island M				
Latitude: 47.5	730	Longitude:	A 30040	-122.2396		
Structure Classification						
Risk Category :	Ш	per ASCE Table	1.5-1			
Seismic Force-Resisting System:	Lig	ht-Framed Wood	Walls Shea	thed with Structural F	vanels	
R:	6 1/2	per ASCE Table	12.2-1			
Ω₀:	2 1/2	per ASCE Table	12.2-1			
C _d :	4	per ASCE Table 12.2-1				
h _n (ft):	28.00	height above the	base to the l	nighest level of the stru	cture	
Site Ground Motion						
Reg. Structure 5 Stories or Less:	Yes	Ss (max) = 1.5	Per ASCE 2	2.8.1.3		
S S ₁ (g-sec):	0.550	S _S (g-sec):	1.410			
Site Class:	D	Ass	umed Value	per ASC	E Table 20.3-1	
S _{D1} (g-sec):	0.550	S _{DS} (g-sec):	0.940	per ASC	E 11.4.4	
Seismic Design Category:	D	per ASCE 11.6				
I _E :	1.00	per ASCE Table	1.5-2			

Fundamental Period per ASCE 12.8.2

Period Method: Structure Type:	Approx All O	imate Fundamental Period ther Structural Systems
T _L (sec):	6.00	ASCE Figures 22-12 through 22-16
Ta (sec):	0.24	Ct * hnx per ASCE Eq. 12.8-7
T _{use} (sec):	0.24	- <= TL

Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8

C _s :	0.14	= S _{DS} / (R/I _E) per ASCE Eq. 12.8-2
C _{s-max} :	0.35	= S_{D1} / (T_a*R/I_E) for T <= T_L per ASCE Eq. 12.8-3
C _{s-max} :	9	= $S_{D1}^{*}T_{L} / (T_{a}^{2*}R/I_{E})$ for T > T_{L} per ASCE Eq. 12.8-4
C _{s-min} :	0.04	per ASCE Eq. 12.8-5
C _{s-min} :		= $0.5S_1 / (R/I_E)$ for $S_1 => 0.6g$ per ASCE Eq. 12.8-6
C _{s-use} :	0.145	

V : 0.145 W = C_{S-use} * W per ASCE Eq. 12.8-1

Quantum Consulting Engineers LLC	Project:	Lundin Residence	Date:	1/7/19	Job No:	18689.01
1511 Third Avenue, Suite 323			Designer:	Qing	Sheet:	1
Seattle, WA 98101	Client:	David & Jaymee	Checked By:	Sandro		

Vert. Distribution of Seismic Forces for the Equiv. Lateral Force Procedure

Per IBC 2015 & ASCE 7-10

Structure: Lundin Residence

Seismic Parameters

l _E :	1.00	per ASCE Table 1.5-2
S _{DS} (g-sec):	0.94	per ASCE 11.4.4
Period (Sec):	0.24	per ASCE 12.8.2.1
k:	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

 $F_x = C_{vx}V$ per ASCE Eq. 12.8-11 $C_{vx} = (w_x h_x^{k})/(Sw_i h_i^{k})$ per ASCE Eq. 12.8-12

Level	h _x (ft)	w _x (k)	% of W_{total}	$w_x * h_x^k$	C _{vx} (%)	F _x (k)	V _x (k)
Roof	28.00	76.70	33.3%	2147.60	52.8%	17.59	
Upper Floor	12.50	153.80	66.7%	1922.50	47.2%	15.75	17.59
							33.33
	Total WT (k):	230.50	Sum:	4070.10			

Total WT (k):

Sum: 4070.10

C_{s-use}: 0.145

V (k): 33.33 per ASCE 12.8.1

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

 $F_{px} = (SF_i/Sw_i) * w_{px} per ASCE Eq 12.10-1$

 $F_{px-max} = 0.4*S_{DS}*I_{E}*w_{px}$ per per ASCE 12.10.1.1

 $F_{px-min} = 0.2*S_{DS}*I_{E}*w_{px}$ per per ASCE 12.10.1.1

Level	w _{px} (k)	Σw _i (k)	F _x (k)	ΣF _i (k)	F _{px} (k)	Notes
Roof	76.70	76.70	17.59	17.59	17.59	
Upper Floor	153.80	230.50	15.75	33.33	28.91	= Fp-min

antum Consulting Engineers LLC	Project:	Lundin Residence	Date: 1/7/19	Job No:	18689.01
11 Third Avenue, Suite 323			Designer: Qing	Sheet:	2
attle, WA 98101	Client:	David & Jaymee	Checked By: Sandro		

Seismic Weights Calculation

Quantum Consulting Engineers Lundin Residence 4041 West Mercer Way Mercer Island, WA 98040

Quantum Job # 18689.01

Upper Floor

	Roof		Steel Awning		Upper F	loor Exteri	or Walls	Upper Floor Interior Walls			
Weight	Area	q _{DL}	Area	q _{DL}	Length	Height	q _{DL}	Length	Height	q _{DL}	
kip	ft ²	psf	ft ²	psf	ft	ft	psf	ft	ft	psf	
76.7	2711	18	455	12	170	8.8	11	102	7.3	8	

<u>Main Floor</u>

	Floor Garage Floor		Upper F	loor Exteri	or Walls	Upper Floor Interior Walls				
Weight	Area	q _{DL}	Area	q _{DL}	Length	Height	q _{DL}	Length	Height	q _{DL}
kip	ft ²	psf	ft ²	psf	ft	ft	psf	ft	ft	psf
153.8	1832	36	541	63	170	8.8	11	102	7.3	8

Main Fl	Main Floor Exterior Walls			oor Interio	Covered Terrace		
Length	Height	q _{DL}	Length	Height	q _{DL}	Area	q _{DL}
ft	ft	psf	ft	ft	psf	ft ²	psf
170	5.5	11	185	5.5	8	324	40

Shearwall Load Distribution

Quantum Consulting Engineers Lundin Residence 4041 West Mercer Way Mercer Island, WA 98040

Quantum Job # 18689.01

Blue cells indicate inputs!!

Upper Floor:

Total diaphragm area A =

East - West Direction

Shearwall lines	Trib. Area (sf)	Perc. %	Wind (lb)	Seismic (lb)
1	270	10	2311	1752
2	743	27	6358	4821
3	1076	40	9208	6981
4	622	23	5323	4036
2 (Clerestory)	358	13	3064	2323
		0	0	0
		0	0	0

2711 sf

North - South Direction

Shearwall lines	Trib. Area	Perc. %	Wind (lb)	Seismic (lb)
A	956	35	3981	6203
B (Main house)	1485	55	6184	9635
B (Garage)	270	10	1124	1752
		0	0	0
A (Clerestory)	431	16	1795	2796
		0	0	0

T

Main Floor:

F

Wind Load W = 27530 Ib (E- W loading direction) 13270 Ib (N-S loading direction)

15750

15750

Total diaphragm area A =

Seismic Load E =

...

2711 sf

Т

Ib (E- W loading direction)

Ib (N-S loading direction)

East - West Directi	on							
Shearwall lines	Trib. Area (sf)	Perc. %	Wind (lb)	Seismic (lb)	Upper FI. Wind (lb)	Upper FI. Seismic (lb)	Total Wind (lb)	Total Seismic (lb)
1	270	10	2742	1569	2311	1752	5052	3320
2	743	27	7545	4317	6358	4821	13904	9137
3	1076	40	10927	6251	9208	6981	20135	13233
4	622	23	6316	3614	5323	4036	11639	7649
		0	0	0	3064	2323	3064	2323
		0	0	0	0	0	0	0
		0	0	0	0	0	0	0

North - South Direction

Shearwall lines	Trib. Area (sf)	Perc. %	Wind (lb)	Seismic (lb)	Upper FI. Wind (lb)	Upper FI. Seismic (lb)	Total Wind (lb)	Total Seismic (lb)
A	978	36	4787	5682	3981	6203	8768	11885
B (Main house)	1094	40	5355	6356	6184	9635	11539	15991
B (Garage)	270	10	1322	1569	1124	1752	2446	3320
С	369	14	1806	2144	0	0	1806	2144
		0	0	0	1795	2796	1795	2796
		0	0	0	0	0	0	0

-							
1511 Third	Avenue, Suite 323	T. 206.957.3900					
Seattle, W	A 98101	F. 206.957.3901					
Project	Lundin Residence		Job #	18689.01	Page	1 of 1	
Client	David & Jaymee Lundin		By	Qing	Date	01/07/19	
Subject	Wood Shear Wall		Checked \$	Sandro	Date	1/7/2019	

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: 1 Location: Main Floor

 Shear Wall Line Loading:
 Tributary Width
 Total Width
 Total Width

 Lateral Loads
 Tributary Width
 Total Width
 Total Wind

 Wind (lb):
 2,311
 Strength Leve
 Seismic (lb):
 1,701
 Strength Level
 Total Seis House?: Yes

Shea

I_{sw} (ft) =

Shear Wall Li	ine Information							Loads O	ver Length of	f the Wall	Loa	ds Tributary to E	nd 1	Loads	s Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (lb) End 1	Wall LL (lb) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	19.30	10.50	0.54	HF #2	0.43	хô	Interstory	2316								
							Interstory									
							Base									
							Base									

19.30 Depth of Floor Framing at Interstory SW Segments (in) = 16.00

Shear Wall Sur	nmary			
SW Segment	Shear Wall	Wall Denth	# of End	مسيعاماها
Mark	Type	wan Depth	Studs	Holdown
1	SW-6	x6	2	CS16 (1705)
			2	
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common 👻	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	88	1.00	0.93	95	120	40%	0.93	92	95	SW-6	416	OK	Seismic
						40%				SW-6			
						40%				SW-6			
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	19.30	19.30	0.00%	OK	No		
			NA		No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ontrolling Shear	r Wall End Ax	ial Compressi	ion Load (ASI	D)								Sds =	0.94				
Other marked controlling Shear Wall End Axial Compression Load (ASD) Segment Name Asis Dissing Comp. (lb) Seismic Comp. (lb) <th< td=""><td>Controll-ing Lateral Load</td></th<>													Controll-ing Lateral Load					
1.00	648	0	648	754	0	754	100	0	0	100	0	0	854	666	854	666	854	Wind
		0			0													
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	imber of Shear	Wall End Cor	mpression Stu	uds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	Cp	F' _c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	22.09	470000	792	0.3167	725	5977	405	405	3341	3341	2
															2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-648	-754	1158	1158	-60	-105	-60	32	-105	Seismic	CS16 (1705)	-1705	OK
											No Strap		
											No HD		
											No HD		

-						
1511 Thin	d Avenue, Suite 323	T. 206.957.3900				
Seattle, W	/A 98101	F. 206.957.3901				
Project	Lundin Residence		Job #	18689.01	Page	1 of 1
Client	David & Jaymee Lundin		By	Qing	Date	01/07/19
Subject	Wood Shear Wall		Checked	Sandro	Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: 2 Location: Clerestory

 Shear Wall Line Loading:
 Tributary Width
 Total Width
 Total Width
 Total Width

 Wind (lb):
 3,064
 Strength Leve
 Seismic (lb):
 2,255
 Strength Level
 Total Seis House?: Yes

 	· · · ·	

Shear Wall L	ine Information							Loads O	ver Length of	f the Wall	Loa	ds Tributary to E	nd 1	Loads	S Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (Ib) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	14.20	3.50	0.25	HF #2	0.43	x6	Interstory	710								
							Interstory									
							Base									
							Base									

I_{SW} (ft) = 14.20 Depth of Floor Framing at Interstory SW Segments (in) = 12.00

Shear Wall Sur	nmary			
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown
1	SW-6	x6	2	CS16 (1705)
			2	
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	159	1.00	0.93	171	216	40%	0.93	166	171	SW-6	416	OK	Seismic
						40%				SW-6			
						40%				SW-6			
_						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	14.20	14.20	0.00%	OK	No		
			NA		No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	controlling Shear Wall End Axial Compression Load (ASD) Sds														0.94			
Sw Segment Mark Seismic Comp. (lb) Seismic Seismic Comp. (lb) Seismic Seismic (lb) Seismic (lb) Wind Comp. (lb) ASD Wind Comp. (lb) End 1 Dead (lb) End 1 Snow (lb) End 2 Dead (lb) End 2 Live (lb) End 2 Snow (lb) End 1 Eq. 16-12 End 1 Eq. 16-12 End 1 Eq. 16-12 End 1 Snow (lb) End 2 Dead (lb) End 2 Dead (lb) End 2 Snow (lb) End 1 Eq. 16-12 End 1 Eq											End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (lb)	Controll-ing Lateral Load				
1.00	389	0	389	453	0	453	42	0	0	42	0	0	495	382	495	382	495	Wind
		0			0													
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	imber of Shear	Wall End Cor	mpression Stu	uds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	C _P	F' _c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	6.82	470000	8311	0.9352	2140	17652	405	405	3341	3341	2
															2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-389	-453	355	355	-240	-223	-240	-181	-240	Wind	CS16 (1705)	-1705	OK
											No Strap		
											No HD		
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01	Page	1 of 1
Client	David & Jaymee Lundin	By Qing	Date	01/07/19
Subject	Wood Shear Wall	Checked Sandro	Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: 2 Location: Main Floor

 Shear Wall Line Loading:
 Tributary Width
 Total Width
 Total Width
 Total Width

 Wind (lb):
 6,358
 Strength Leve
 Seismic (lb):
 4,681
 Strength Level
 Total Seis House?: Yes

Choor	Wall	Line	Inform

I_{sw} (ft) =

Shear Wall Li	ne Information						Loads Over Length of the Wall					ds Tributary to E	nd 1	Loads	Tributary to I	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (lb) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	3.00	8.50	2.83	HF #2	0.43	xб	Interstory	297								
2	3.50	8.50	2.43	HF #2	0.43	x6	Interstory	327								
3	2.70	8.50	3.15	HF #2	0.43	x6	Interstory	265								
							Base									

9.20 Depth of Floor Framing at Interstory SW Segments (in) = 16.00

Shear Wall Summary													
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown									
1	SW-2	x6	2	CMSTC16 (4585)									
2	SW-2	x6	2	CMSTC16 (4585)									
3	SW-2	x6	2	CMSTC16 (4585)									
			2										

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segmen Mark	t Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	509	0.71	0.93	775	691	40%	0.93	531	775	SW-2	1024	OK	Seismic
2.00	509	0.82	0.93	664	691	40%	0.93	531	664	SW-2	1024	OK	Seismic
3.00	509	0.64	0.93	861	691	40%	0.93	531	861	SW-2	1024	OK	Seismic
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	ssumed M _{oT} ever Arm (ft) Actual M _{oT} Lever Arm (ft) % Different Sta		Status	Override Lever Arm?	User Input M _{OT} Lever Arm (ft)	% Different
1.00	3.00	3.00	0.00%	OK	No		
2.00	3.50	3.50	0.00%	OK	No		
3.00	2.70	2.70	0.00%	OK	No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	Controlling Shear Wall End Axial Compression Load (ASD) Sds														0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (Ib)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (Ib)	End 2 Dead (lb)	End 2 Live (lb)	End 2 Snow (lb)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (Ib)	Controll-ing Lateral Load	
1.00	3027	0	3027	3525	0	3525	83	0	0	83	0	0	3607	2726	3607	2726	3607	Wind	
2.00	3027	0	3027	3525	0	3525	78	0	0	78	0	0	3602	2721	3602	2721	3602	Wind	
3.00	3027	0	3027	3525	0	3525	82	0	0	82	0	0	3606	2725	3606	2725	3606	Wind	
		0			0														

Determine Number of Shear Wall End Compression Studs (ASD)

Determine NL	imper of Snear	wall End Cor	npression Sti	ias (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	C _b =	1.00							
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	Cp	F' _c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _{c⊥} (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	17.55	470000	1255	0.4668	1068	8811	405	405	3341	3341	2
2.00	5.50	1.10	1300	2288	17.55	470000	1255	0.4668	1068	8811	405	405	3341	3341	2
3.00	5.50	1.10	1300	2288	17.55	470000	1255	0.4668	1068	8811	405	405	3341	3341	2
															2

SW Segment Mark	Seismic Ten. Total (lb)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-3027	-3525	149	149	-3435	-2958	-3435	-2940	-3435	Wind	CMSTC16 (4585)	-4585	OK
2.00	-3027	-3525	164	164	-3426	-2951	-3426	-2931	-3426	Wind	CMSTC16 (4585)	-4585	ок
3.00	-3027	-3525	133	133	-3445	-2965	-3445	-2950	-3445	Wind	CMSTC16 (4585)	-4585	ОК
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	JOD # 18689.01	Page	1 of 1
Client	David & Jaymee Lundin	By Qing	Date	01/07/19
Subject	Wood Shear Wall	Checked Sandro	Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: 3 Location: Main Floor

 Shear Wall Line Loading:
 Total Width
 Total Width
 Total Wind

 Lateral Loads
 Tributary Width
 Total Wind
 Total Wind

 Wind (lb):
 9,208
 Strength Leve Seismic (lb):
 6,779
 Strength Level
 Total Seis House?: Yes

Shoar	Wall	ı.	ino	Informa

I_{sw} (ft) =

hear Wall Li	ne Information						Loads Over Length of the Wall					Loads Tributary to End 1		Loads Tributary to End 2		
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{sw} /I _{seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (lb) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	8.00	10.50	1.31	HF #2	0.43	x6	Interstory	912								
2	8.60	14.50	1.69	HF #2	0.43	x6	Interstory	1256								
							Base									
							Base									

16.60 Depth of Floor Framing at Interstory SW Segments (in) = 16.00

Shear Wall Summary												
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown								
1	SW-4	x6	2	CMSTC16 (4585)								
2	SW-4	x6	2	CMSTC16 (4585)								
			2									
			2									

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	408	1.00	0.93	439	555	40%	0.93	426	439	SW-4	608	OK	Seismic
2.00	408	1.00	0.93	439	555	40%	0.93	426	439	SW-4	608	OK	Seismic
						40%				SW-6			
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{OT} Lever Arm (ft)	% Different
1.00	8.00	8.00	0.00%	OK	No		
2.00	8.60	8.60	0.00%	OK	No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	rmine Controlling Shear Wall End Axial Compression Load (ASD)											Sds = 0.94						
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (lb)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (lb)	End 2 Dead (lb)	End 2 Live (Ib)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (Ib)	Controll-ing Lateral Load
1.00	3002	0	3002	3495	0	3495	95	0	0	95	0	0	3590	2716	3590	2716	3590	Wind
2.00	4145	0	4145	4826	0	4826	122	0	0	122	0	0	4948	3741	4948	3741	4948	Wind
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	imber of Shear	Wall End Cor	mpression Stu	uds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	C _P	F' _c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	21.91	470000	805	0.3213	735	6066	405	405	3341	3341	2
2.00	5.50	1.10	1300	2288	30.64	470000	412	0.1727	395	3260	405	405	3341	3260	2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (lb)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-3002	-3495	456	456	-3221	-2788	-3221	-2734	-3221	Wind	CMSTC16 (4585)	-4585	OK
2.00	-4145	-4826	628	628	-4449	-3851	-4449	-3776	-4449	Wind	CMSTC16 (4585)	-4585	OK
											No HD		
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01	Page	1 of 1
Client	David & Jaymee Lundin	By Qing	Date	01/07/19
Subject	Wood Shear Wall	Checked Sandro	Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: 4 Location: Main Floor

 Shear Wall Line Loading:
 Total Width
 Total Width
 Total Wind

 Lateral Loads
 Tributary Width
 Total Wind
 Total Wind

 Wind (lb):
 5,323
 Strength Leve Seismic (lb):
 3,919
 Strength Level
 Total Seis House?: Yes

Choor	Wall	Line	Inform

ihear Wall Li	ne Information							Loads O	ver Length of	the Wall	Loa	ds Tributary to E	nd 1	Loads	Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (lb) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	22.30	14.50	0.65	HF #2	0.43	x6	Interstory	3568								
2	8.50	7.50	0.88	HF #2	0.43	x6	Base	765							1	
							Base									
							Base									
I _{SW} (ft) =	30.80															

30.80 Depth of Floor Framing at Interstory SW Segments (in) = 16.00

Shear Wall Sur	nmary			
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown
1	SW-6	x6	2	CS16 (1705)
2	SW-6	x6	2	HDU2 (3075DF,2215H
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

	SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
Г	1.00	127	1.00	0.93	137	173	40%	0.93	133	137	SW-6	416	OK	Seismic
	2.00	127	1.00	0.93	137	173	40%	0.93	133	137	SW-6	416	OK	Seismic
E							40%				SW-6			
г							40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	22.30	22.30	0.00%	OK	No		
2.00	8.50	8.50	0.00%	OK	No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ontrolling Shear	r Wall End Ax	ial Compressi	on Load (ASI	D)								Sds =	0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (Ib)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (lb)	End 2 Dead (lb)	End 2 Live (Ib)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (Ib)	Controll-ing Lateral Load
1.00	1291	0	1291	1504	0	1504	133	0	0	133	0	0	1637	1261	1637	1261	1637	Wind
2.00	668	0	668	778	0	778	75	0	0	75	0	0	853	658	853	658	853	Wind
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	imber of Shear	Wall End Cor	mpression Stu	uds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	C _P	F' _c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	30.82	470000	407	0.1708	391	3223	405	405	3341	3223	2
2.00	5.50	1.10	1300	2288	15.55	470000	1599	0.5579	1276	10531	405	405	3341	3341	2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (lb)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-1291	-1504	1784	1784	-433	-456	-433	-245	-456	Seismic	CS16 (1705)	-1705	OK
2.00	-668	-778	383	383	-548	-489	-548	-444	-548	Wind	HDU2 (3075DF,2215HF)	-2215	OK
											No HD		
											No HD		

-						
1511 Thin	d Avenue, Suite 323	T. 206.957.3900				
Seattle, W	/A 98101	F. 206.957.3901				
Project	Lundin Residence		Job #	18689.01	Page	1 of 1
Client	David & Jaymee Lundin		By	Qing	Date	01/07/19
Subject	Wood Shear Wall		Checked	Sandro	Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: 1 Location: Lower Floor

 Shear Wall Line Loading:
 Tributary Width
 Total Width
 Total Width

 Lateral Loads
 Tributary Width
 Total Width
 Total Width
 Total Width

 Wind (b):
 5,052
 Strength Leve
 Seismic (lb):
 3,273
 Strength Level
 Total Seis House?: Yes

Shear Wall Li	ne Information							Loads C	over Length o	f the Wall	Loa	ds Tributary to E	nd 1	Loads	s Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (lb) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb End 2
1	19.30	11.00	0.57	HF #2	0.43	xб	Base	7295								
							Base									
							Base									
							Base									
I _{SW} (ft) =	19.30															

19.30 Depth of Floor Framing at Interstory SW Segments (in) = 0.00

Shear Wall Sur	nmary			
SW Segment	Shear Wall	Wall Depth	# of End	Holdown
Mark	Type		Studs	
1	SW-6	x6	2	No HD
			2	
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	170	1.00	0.93	182	262	40%	0.93	201	201	SW-6	416	OK	Wind
						40%				SW-6			
						40%				SW-6			
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	19.30	19.30	0.00%	OK	No		
			NA		No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	termine Controlling Shear Wall End Axial Compression Load (ASD) Sds = 0.94																	
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (lb)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (Ib)	End 2 Dead (lb)	End 2 Live (Ib)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (lb)	Controll-ing Lateral Load
1.00	1306	105	1411	1728	60	1788	315	0	0	315	0	0	2103	1656	2103	1656	2103	Wind
		0			0													
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	umber of Shear	Wall End Cor	npression Stu	ıds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	Cp	F' _c (psi)	P'c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	23.18	470000	719	0.2904	665	5482	405	405	3341	3341	2
															2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-1411	-1788	3648	3648	401	298	401	730	298	Seismic	No HD	0	OK
											No HD		
											No HD		
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01 Pa	ige	1 of 1
Client	David & Jaymee Lundin	By Qing D	ate	01/07/19
Subject	Wood Shear Wall	Checked Sandro D	ate	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: 2 Location: Lower Floor

 Shear Wall Line Loading:
 Total Width
 Total Width
 Total Width
 Total Width

 Lateral Loads
 13,904
 Strength Leve
 Seismic (lb):
 9,006
 Strength Level
 Total Seis Yes House?:

Chees	Mall.	1	In farmers

I_{SW} (ft) =

Shear Wall Li	ine Information							Loads C	ver Length of	f the Wall	Loa	ds Tributary to E	nd 1	Load	s Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (lb) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	7.50	11.00	1.47	DF #2	0.50	xб	Base	3495								
2	9.00	11.00	1.22	DF #2	0.50	x6	Base	4194								
3	8.50	11.00	1.29	HF #2	0.43	x6	Base	1150								
							Base									

25.00 Depth of Floor Framing at Interstory SW Segments (in) = 0.00

Shear Wall Sur	nmary			
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown
1	SW-4	x6	3	(3) Studs (7870DF, 5665HF)
2	SW-4	x6	3	(3) Studs (7870DF, 5665HF)
3	SW-4	x6	2	IDU5 (5645DF, 4065HF)
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	360	1.00	1.00	360	556	40%	1.00	397	397	SW-4	608	OK	Wind
2.00	360	1.00	1.00	360	556	40%	1.00	397	397	SW-4	608	OK	Wind
3.00	360	1.00	0.93	387	556	40%	0.93	427	427	SW-4	608	OK	Wind
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	7.50	7.50	0.00%	OK	No		
2.00	9.00	9.00	0.00%	OK	No		
3.00	8.50	8.50	0.00%	OK	No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ttrolling Shear Wall End Axial Compression Load (ASD)													0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (lb)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (lb)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (Ib)	End 2 Dead (lb)	End 2 Live (lb)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (lb)	Controll-ing Lateral Load
1.00	2774	4543	7317	3671	3909	7580	388	0	0	388	0	0	7968	6073	7968	6073	7968	Wind
2.00	2774	4543	7317	3671	3909	7580	388	0	0	388	0	0	7968	6073	7968	6073	7968	Wind
3.00	2774	0	2774	3671	0	3671	113	0	0	113	0	0	3783	2866	3783	2866	3783	Wind
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine NL	imper of Snear	wall End Col	npression Sti	ias (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	с =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	C _P	F' _c (psi)	P'c (lb)	F _c ⊥ (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1350	2376	23.00	580000	901	0.3434	816	6731	625	625	5156	5156	3
2.00	5.50	1.10	1350	2376	23.00	580000	901	0.3434	816	6731	625	625	5156	5156	3
3.00	5.50	1.10	1300	2288	23.00	470000	730	0.2946	674	5561	405	405	3341	3341	2
															2

SW Segment Mark	Seismic Ten. Total (lb)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (Ib)	Status
1.00	-7317	-7580	1748	1748	-6531	-6498	-6531	-6291	-6531	Wind	HDU8 (3) Studs (7870DF, 5665HF)	-7870	ок
2.00	-7317	-7580	2097	2097	-6321	-6335	-6321	-6086	-6335	Seismic	HDU8 (3) Studs (7870DF, 5665HF)	-7870	ок
3.00	-2774	-3671	575	575	-3326	-2505	-3326	-2436	-3326	Wind	HDU5 (5645DF, 4065HF)	-4065	ОК
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01 Pa	ge	1 of 1
Client	David & Jaymee Lundin	By Qing Da	ate	01/07/19
Subject	Wood Shear Wall	Checked Sandro Da	ate	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: 3 Location: Lower Floor

Shear Wall Line Loading: Tributary Width Total Width Total Width Total Wind Lateral Loads Tributary Width Total Width Total Wind Total Wind Wind (b): 20,135 Strength Leve Seismic (b): 13,042 Strength Level Total Seis House?: Yes

Shear Wall Li	ne Information							Loads O	ver Length of	the Wall	Loa	ds Tributary to E	nd 1	Loads	Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (Ib) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	20.50	11.00	0.54	HF #2	0.43	x6	Base	2788								
							Base								1	
							Base									
							Base									
I _{SW} (ft) =	20.50															

20.50 Depth of Floor Framing at Interstory SW Segments (in) = 0.00

Shear Wall Sur	nmary			
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown
1	SW-3	x6	3	(3) Studs (7870DF, 5665HF)
			2	
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	636	1.00	0.93	684	982	40%	0.93	754	754	SW-3	784	OK	Wind
						40%				SW-6			
						40%				SW-6			
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	20.50	20.50	0.00%	OK	No		
			NA		No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	Ast Asia Compression Load (ASD) Asing Seismic Seismic Comp. Total Wind Comp. End 1 Dead End 1 Live End 1 Snow End 2 Dead End 2 Live (lb) End 2 Snow													0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (lb)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (lb)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (Ib)	End 2 Dead (lb)	End 2 Live (lb)	End 2 Snow (lb)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (Ib)	Controll-ing Lateral Load
1.00	4899	0	4899	6482	0	6482	113	0	0	113	0	0	6596	4975	6596	4975	6596	Wind
		0			0													
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	umber of Shear	Wall End Cor	npression Stu	uds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	Cp	F'c (psi)	P'c (lb)	F _{c⊥} (psi)	F' _{c⊥} (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	23.00	470000	730	0.2946	674	5561	405	405	3341	3341	3
															2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (Ib)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-4899	-6482	1394	1394	-5646	-4246	-5646	-4081	-5646	Wind	HDU8 (3) Studs (7870DF, 5665HF)	-5665	OK
											No HD		
											No HD		
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01	Page	1 of 1
Client	David & Jaymee Lundin	By Qing	Date	01/07/19
Subject	Wood Shear Wall	Checked Sandro	Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: 4 Location: Lower Floor

 Shear Wall Line Loading:
 Total Width
 Total Width
 Total Wind

 Lateral Loads
 Tributary Width
 Total Width
 Total Wind

 Wind (b):
 11,639
 Strength Leve
 Seismic (b):
 7,539
 Strength Level
 Total Seis House?: Yes Loads Over Length of the Wall

Mall I in a Informatio

Shear Wall Lii	near Wall Line Information Loads Tributary to End 1 Loads Tributary to End 1 Loads Tributary to End 1 Loads Tributary to End 2															End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{sw} /I _{seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (Ib) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	16.00	11.00	0.69	HF #2	0.43	x6	Base	2144								
2	13.00	11.00	0.85	HF #2	0.43	x6	Base	3000								
							Base									
							Base									
I _{SW} (ft) =	sw (ft) = 29.00															

Depth of Floor Framing at Interstory SW Segments (in) = 0.00

Shear Wall Sur	nmary			
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown
1	SW-6	x6	2	HDU4 (4565DF, 3285HF
2	SW-6	x6	2	HDU2 (3075DF,2215HF
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	260	1.00	0.93	280	401	40%	0.93	308	308	SW-6	416	OK	Wind
2.00	260	1.00	0.93	280	401	40%	0.93	308	308	SW-6	416	OK	Wind
						40%				SW-6			
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	16.00	16.00	0.00%	OK	No		
2.00	13.00	13.00	0.00%	OK	No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ontrolling Shear	r Wall End Ax	ial Compress	ion Load (ASI	D)								Sds =	0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (lb)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (lb)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (lb)	End 2 Dead (lb)	End 2 Live (lb)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (Ib)	Controll-ing Lateral Load
1.00	2002	456	2458	2649	433	3082	112	0	0	112	0	0	3194	2423	3194	2423	3194	Wind
2.00	2002	0	2002	2649	0	2649	192	0	0	192	0	0	2841	2179	2841	2179	2841	Wind
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	imber of Shear	Wall End Cor	mpression Stu	uds (ASD)											
C _D = 1.60 C _M = 1.00 C _t = 1.00								0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	Cp	F'c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	23.18	470000	719	0.2904	665	5482	405	405	3341	3341	2
2.00	5.50	1.10	1300	2288	23.18	470000	719	0.2904	665	5482	405	405	3341	3341	2
															2
															2

SW Segment Mark	Seismic Ten. Total (lb)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (lb)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-2458	-3082	1072	1072	-2439	-1956	-2439	-1829	-2439	Wind	HDU4 (4565DF, 3285HF)	-3285	OK
2.00	-2002	-2649	1500	1500	-1749	-1299	-1749	-1121	-1749	Wind	HDU2 (3075DF,2215HF)	-2215	ок
											No HD		
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01	Page	1 of 1
Client	David & Jaymee Lundin	By Qing	Date	01/07/19
Subject	Wood Shear Wall	Checked Sandro	Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: A Location: Clerestory

 Shear Wall Line Loading:
 Total Width
 Total Width
 Total Wind

 Lateral Loads
 Tributary Width
 Total Width
 Total Wind

 Wind (lb):
 1,795
 Strength Leve
 Seismic (lb):
 2,715
 Strength Level
 Total Seis House?: Yes

Shoar	Wall	ino	Info	rm

hear Wall Li	ne Information							Loads O	ver Length of	the Wall	Loa	ds I ributary to E	nd 1	Loads	I ributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (Ib) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	5.30	3.50	0.66	HF #2	0.43	x6	Interstory	742								
2	18.00	3.50	0.19	HF #2	0.43	x6	Interstory	2520								
						x6	Base									
							Base									
I _{SW} (ft) =	23.30															

23.30 Depth of Floor Framing at Interstory SW Segments (in) = 14.00

Shear Wall Sur	nmary			
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown
1	SW-6	x6	2	CS16 (1705)
2	SW-6	x6	2	No Strap
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	117	1.00	0.93	125	77	40%	0.93	59	125	SW-6	416	OK	Seismic
2.00	117	1.00	0.93	125	77	40%	0.93	59	125	SW-6	416	OK	Seismic
						40%				SW-6			
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	5.30	5.30	0.00%	OK	No		
2.00	18.00	18.00	0.00%	OK	No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ontrolling Shea	r Wall End Ax	ial Compress	ion Load (ASI	D)								Sds =	0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (lb)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (lb)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (lb)	End 2 Dead (lb)	End 2 Live (lb)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (Ib)	Controll-ing Lateral Load
1.00	285	0	285	162	0	162	117	0	0	117	0	0	418	342	418	342	418	Seismic
2.00	285	0	285	162	0	162	117	0	0	117	0	0	418	342	418	342	418	Seismic
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	Imber of Shear	Wall End Cor	mpression Stu	ıds (ASD)											
	C _D =	1.60	С _м =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	C _P	F' _c (psi)	P'c (lb)	F _c ⊥ (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	6.82	470000	8311	0.9352	2140	17652	405	405	3341	3341	2
2.00	5.50	1.10	1300	2288	6.82	470000	8311	0.9352	2140	17652	405	405	3341	3341	2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (lb)	End 1 Dead (lb)	End 2 Dead (Ib)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-285	-162	371	371	61	-112	61	-68	-112	Seismic	CS16 (1705)	-1705	OK
2.00	-285	-162	1260	1260	594	305	594	454	305	Seismic	No Strap	0	OK
											No HD		
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01 Page	1 of 1
Client	David & Jaymee Lundin	By Qing Date	01/07/19
Subject	Wood Shear Wall	Checked Sandro Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: A Location: Main Floor

 Shear Wall Line Loading:
 Total Width
 Total Width
 Total Wind

 Lateral Loads
 Tributary Width
 Total Width
 Total Wind

 Wind (b):
 3,981
 Strength Leve
 Strength Level
 Total Seis House?: Yes

I_{SW} (ft) =

ihear Wall Li	ine Information							Loads O	ver Length of	the Wall	Loa	ds Tributary to E	nd 1	Loads	Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (lb) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	3.30	4.50	1.36	HF #2	0.43	xб	Base	371								
2	2.70	7.00	2.59	HF #2	0.43	x6	Base	474								
3	7.50	10.50	1.40	HF #2	0.43	x6	Base	1294								
4	2.90	9.50	3.28	HF #2	0.43	x6	Base	843								

16.40 Depth of Floor Framing at Interstory SW Segments (in) = 0.00

Shear Wall Sur	nmary			
SW Segment	Shear Wall	Wall Depth	# of End	Holdown
Mark	Type		Studs	
1	SW-3	x6	2	IDU4 (4565DF, 3285HF)
2	SW-3	x6	2	IDU4 (4565DF, 3285HF)
3	SW-3	x6	2	IDU4 (4565DF, 3285HF)
4	SW-3	x6	2	IDU4 (4565DF, 3285HF)

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	367	1.00	0.93	395	243	40%	0.93	186	395	SW-3	784	OK	Seismic
2.00	367	0.77	0.93	512	243	40%	0.93	186	512	SW-3	784	OK	Seismic
3.00	367	1.00	0.93	395	243	40%	0.93	186	395	SW-3	784	OK	Seismic
4 00	367	0.61	0.93	647	243	40%	0.93	186	647	SW-3	784	OK	Seismic

a - 1 00

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	3.30	3.30	0.00%	OK	No		
2.00	2.70	2.70	0.00%	OK	No		
3.00	7.50	7.50	0.00%	OK	No		
4.00	2.90	2.90	0.00%	OK	No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ontrolling Shear	r Wall End Ax	e Controlling Shear Wall End Axial Compression Load (ASD)															
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (Ib)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (lb)	End 2 Dead (lb)	End 2 Live (lb)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (Ib)	Controll-ing Lateral Load
1.00	1157	0	1157	655	0	655	94	0	0	94	0	0	1263	971	1263	971	1263	Seismic
2.00	1800	0	1800	1020	0	1020	146	0	0	146	0	0	1965	1510	1965	1510	1965	Seismic
3.00	2699	0	2699	1529	0	1529	144	0	0	144	0	0	2862	2182	2862	2182	2862	Seismic
4.00	2442	0	2442	1384	0	1384	242	0	0	242	0	0	2716	2098	2716	2098	2716	Seismic

• -

4 00

Determine Number of Shear Wall End Compression Studs (ASD)

	C _D =	1.00	CM -	1.00	- Ut	1.00	C -	0.0			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	C _P	F' _c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	8.82	470000	4968	0.8801	2014	16612	405	405	3341	3341	2
2.00	5.50	1.10	1300	2288	14.27	470000	1897	0.6230	1425	11760	405	405	3341	3341	2
3.00	5.50	1.10	1300	2288	21.91	470000	805	0.3213	735	6066	405	405	3341	3341	2
4.00	5.50	1.10	1300	2288	19.73	470000	993	0.3855	882	7277	405	405	3341	3341	2

~ ~

SW Segment Mark	Seismic Ten. Total (lb)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-1157	-655	186	186	-544	-1070	-544	-1048	-1070	Seismic	HDU4 (4565DF, 3285HF)	-3285	ОК
2.00	-1800	-1020	237	237	-877	-1689	-877	-1660	-1689	Seismic	HDU4 (4565DF, 3285HF)	-3285	ОК
3.00	-2699	-1529	647	647	-1141	-2396	-1141	-2320	-2396	Seismic	HDU4 (4565DF, 3285HF)	-3285	ОК
4.00	-2442	-1384	422	422	-1131	-2245	-1131	-2195	-2245	Seismic	HDU4 (4565DF, 3285HF)	-3285	ОК

-							
1511 Third	Avenue, Suite 323	T. 206.957.3900					
Seattle, W	A 98101	F. 206.957.3901					
Project	Lundin Residence		Job #	18689.01	Page	1 of 1	
Client	David & Jaymee Lundin		By	Qing	Date	01/07/19	
Subject	Wood Shear Wall		Checked \$	Sandro	Date	1/7/2019	

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: B Location: Main Floor

 Shear Wall Line Loading:
 Total Width
 Total Width
 Total Wind

 Lateral Loads
 Tributary Width
 Total Wind
 Total Wind

 Wind (lb):
 6,184
 Strength Leve
 Seismic (lb):
 9,356
 Strength Level
 Total Seis House?: Yes

Chees	14/~11	1	In farmers

I_{SW} (ft) =

Shear Wall Li	ne Information							Loads C	Iver Length of	the Wall	Loa	ds Tributary to E	nd 1	Loads	a Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (lb) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	16.50	14.50	0.88	HF #2	0.43	xб	Interstory	6630								
							Base									
							Base									
							Base									

16.50 Depth of Floor Framing at Interstory SW Segments (in) = 16.00

Shear Wall Sur	nmary			
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown
1	SW-3	x6	2	CMSTC16 (4585)
			2	
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	567	1.00	0.93	610	375	40%	0.93	288	610	SW-3	784	OK	Seismic
						40%				SW-6			
						40%				SW-6			
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	16.50	16.50	0.00%	OK	No		
			NA		No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ontrolling Shear	r Wall End Ax	ial Compressi	on Load (ASI	D)								Sds =	0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (lb)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (Ib)	End 2 Dead (lb)	End 2 Live (Ib)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (lb)	Controll-ing Lateral Load
1.00	5755	0	5755	3261	0	3261	335	0	0	335	0	0	6134	4684	6134	4684	6134	Seismic
		0			0													
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	umber of Shear	Wall End Cor	mpression Stu	uds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	Cp	F' _c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	30.64	470000	412	0.1727	395	3260	405	405	3341	3260	2
															2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (lb)	End 1 Dead (lb)	End 2 Dead (Ib)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-5755	-3261	3315	3315	-1272	-4203	-1272	-3810	-4203	Seismic	CMSTC16 (4585)	-4585	OK
											No HD		
											No HD		
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01 Page	1 of 1
Client	David & Jaymee Lundin	By Qing Date	01/07/19
Subject	Wood Shear Wall	Checked Sandro Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: B Location: Main Floor (Garage)

Shear Wall Line Loading: Tributary Width Total Width Total Width Lateral Loads Tributary Width Total Width Total Wind Wind (lb): 1,124 Strength Leve Seismic (lb): 1,701 Strength Level Total Seis House?: Yes

Ch	14/011	1	In farme

Shear Wall Li	ine Information							Loads O	ver Length of	the Wall	Loa	ds Tributary to Ei	nd 1	Loads	Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (lb) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	14.00	10.50	0.75	HF #2	0.43	xб	Interstory	3885								
							Base									
						1	Base						1			
							Base									1

I_{SW} (ft) = 14.00 Depth of Floor Framing at Interstory SW Segments (in) = 16.00

Shear Wall Sur	nmary			
SW Segment	Shear Wall	Wall Denth	# of End	Haldaum
Mark	Type	wan Depth	Studs	Holdowii
1	SW-6	x6	2	No Strap
			2	
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	122	1.00	0.93	131	80	40%	0.93	62	131	SW-6	416	OK	Seismic
						40%				SW-6			
						40%				SW-6			
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	14.00	14.00	0.00%	OK	No		
			NA		No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ontrolling Shear	r Wall End Ax	ial Compressi	on Load (ASI	D)								Sds =	0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (lb)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (Ib)	End 2 Dead (lb)	End 2 Live (Ib)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (lb)	Controll-ing Lateral Load
1.00	893	0	893	506	0	506	231	0	0	231	0	0	1155	924	1155	924	1155	Seismic
		0			0													
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	umber of Shear	Wall End Cor	mpression Stu	uds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	Cp	F'c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	22.09	470000	792	0.3167	725	5977	405	405	3341	3341	2
															2
															2
															2

	SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
	1.00	-893	-506	1943	1943	660	17	660	247	17	Seismic	No Strap	0	ок
Γ												No HD		
												No HD		
												No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

1511 Third	Avenue, Suite 323	T. 206.957.3900				
Seattle, WA	A 98101	F. 206.957.3901				
Project	Lundin Residence		Job #	18689.01	Page	1 of 1
Client	David & Jaymee Lundin		By	Qing	Date	01/07/19
Subject	Wood Shear Wall		Checked S	andro	Date	1/7/2019
D						

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: B Location: Lower Floor

 Shear Wall Line Loading:
 Total Width
 Total Width
 Total Wind

 Lateral Loads
 Tributary Width
 Total Width
 Total Wind

 Wind (b):
 11,539
 Strength Leve Seismic (b):
 15,724
 Strength Level
 Total Seis House?: Yes Loads Over Length of the Wall

Mall I in a Informatio

Shear Wall Lir	e Information							Loads O	ver Length of	the Wall	Loa	Loads Tributary to End 1 Loads Tributary to End 2				End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (Ib) End 1	Wall LL (lb) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	6.50	11.00	1.69	DF #2	0.50	хô	Base	3692								
2	5.60	11.00	1.96	DF #2	0.50	x6	Base	3181								
3	6.50	11.00	1.69	HF #2	0.43	x6	Base	3692								
4	13.50	11.00	0.81	HF #2	0.43	x6	Base	7506								
I _{sw} (ft) =	32.10															

Depth of Floor Framing at Interstory SW Segments (in) = 0.00

Shear Wall Summary													
SW Segment Mark	Shear Wall	Wall Depth	# of End Studs	Holdown									
1	SW-4	x6	3	(3) Studs (7870DF, 5665HF)									
2	SW-4	x6	3	(3) Studs (7870DF, 5665HF)									
3	SW-4	x6	2	IDU4 (4565DF, 3285HF)									
4	SW-4	x6	2	IDU4 (4565DF, 3285HF)									

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	490	1.00	1.00	490	359	40%	1.00	257	490	SW-4	608	OK	Seismic
2.00	490	1.00	1.00	490	359	40%	1.00	257	490	SW-4	608	OK	Seismic
3.00	490	1.00	0.93	527	359	40%	0.93	276	527	SW-4	608	OK	Seismic
4.00	490	1.00	0.93	527	359	40%	0.93	276	527	SW-4	608	OK	Seismic

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	6.50	6.50	0.00%	OK	No		
2.00	5.60	5.60	0.00%	OK	No		
3.00	6.50	6.50	0.00%	OK	No		
4.00	13.50	13.50	0.00%	OK	No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ontrolling Shear	r Wall End Ax	ial Compress	ion Load (ASI	D)								Sds =	0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (Ib)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (lb)	End 1 Snow (lb)	End 2 Dead (lb)	End 2 Live (lb)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (Ib)	Controll-ing Lateral Load
1.00	3772	4203	7975	2373	1272	3645	473	0	0	473	0	0	8510	6501	8510	6501	8510	Seismic
2.00	3772	4203	7975	2373	1272	3645	473	0	0	473	0	0	8510	6501	8510	6501	8510	Seismic
3.00	3772	0	3772	2373	0	2373	473	0	0	473	0	0	4307	3349	4307	3349	4307	Seismic
4.00	3772	0	3772	2373	0	2373	463	0	0	463	0	0	4296	3338	4296	3338	4296	Seismic

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	mine Number of Shear Wall End Compression Studs (ASD)														
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	Cp	F'c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1350	2376	23.00	580000	901	0.3434	816	6731	625	625	5156	5156	3
2.00	5.50	1.10	1350	2376	23.00	580000	901	0.3434	816	6731	625	625	5156	5156	3
3.00	5.50	1.10	1300	2288	23.00	470000	730	0.2946	674	5561	405	405	3341	3341	2
4.00	5.50	1.10	1300	2288	23.00	470000	730	0.2946	674	5561	405	405	3341	3341	2

SW Segment Mark	Seismic Ten. Total (lb)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (lb)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-7975	-3645	1846	1846	-2537	-7110	-2537	-6891	-7110	Seismic	HDU8 (3) Studs (7870DF, 5665HF)	-7870	ОК
2.00	-7975	-3645	1591	1591	-2690	-7230	-2690	-7041	-7230	Seismic	HDU8 (3) Studs (7870DF, 5665HF)	-7870	ОК
3.00	-3772	-2373	1846	1846	-1265	-2907	-1265	-2688	-2907	Seismic	HDU4 (4565DF, 3285HF)	-3285	ОК
4.00	-3772	-2373	3753	3753	-121	-2014	-121	-1569	-2014	Seismic	HDU4 (4565DF, 3285HF)	-3285	ОК

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01 Page	1 of 1
Client	David & Jaymee Lundin	By Qing Date	01/07/19
Subject	Wood Shear Wall	Checked Sandro Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: B Location: Lower Floor (Garage)

 Shear Wall Line Loading:
 Tributary Width
 Total Width
 Total Width
 Total Wind

 Wind (b):
 2,446
 Strength Leve
 Strength Level
 Strength Level
 Total Seis House?: Yes

Shoar Wall	ino	Inform

Shear Wall Li	ne Information							Loads O	ver Length of	the Wall	Loa	ds Tributary to E	nd 1	Loads	Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{SW} /I _{Seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (Ib) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	5.00	11.00	2.20	HF #2	0.43	x6	Base	760								
				HF #2		x6	Base								1	
				HF #2		x6	Base									
				HF #2		х6	Base									
I _{SW} (ft) =	5.00															

5.00 Depth of Floor Framing at Interstory SW Segments (in) = 0.00

Shear Wall Sur	nmary			
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown
1	SW-3	x6	3	(3) Studs (7870DF, 5665HF)
			2	
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G _a (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
1.00	655	0.91	0.93	774	489	40%	0.93	376	774	SW-3	784	OK	Seismic
						40%				SW-6			
						40%				SW-6			
						40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{ot} Lever Arm (ft)	% Different
1.00	5.00	5.00	0.00%	OK	No		
			NA		No		
			NA		No		
			NA		No		

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	ontrolling Shear	r Wall End Ax	ial Compressi	on Load (ASI	D)								Sds =	0.94				
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (lb)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (Ib)	End 2 Dead (lb)	End 2 Live (Ib)	End 2 Snow (Ib)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (lb)	Controll-ing Lateral Load
1.00	5040	0	5040	3229	0	3229	127	0	0	127	0	0	5184	3919	5184	3919	5184	Seismic
		0			0													
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	umber of Shear	Wall End Cor	mpression Stu	ıds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	C _P	F' _c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	23.00	470000	730	0.2946	674	5561	405	405	3341	3341	3
															2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (Ib)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (Ib)	Controll-ing Lateral Load	Holdown	Holdown Capacity (Ib)	Status
1.00	-5040	-3229	380	380	-3001	-4862	-3001	-4817	-4862	Seismic	HDU8 (3) Studs (7870DF, 5665HF)	-5665	OK
											No HD		
											No HD		
											No HD		

1511 Third Avenue, Suite 323 T. 206.957.3900

Seattle, WA 98101 F. 206.957.3901

Project	Lundin Residence	Job # 18689.01	Page	1 of 1
Client	David & Jaymee Lundin	By Qing	Date	01/07/19
Subject	Wood Shear Wall	Checked Sandro	Date	1/7/2019

Base Floor Wood Shear Wall Design Per IBC 2015, ASCE 7-10, SDPWS-2015, & NDS 2015

Structure: Lundin Residence Shear Wall Line: C Location: Lower Floor

 Shear Wall Line Loading:
 Total Width
 Total Width
 Total Wind

 Lateral Loads
 Tributary Width
 Total Width
 Total Wind

 Wind (lb):
 1,806
 Strength Leve
 Strength Level
 Total Seis House?: Yes

I_{sw} (ft) =

hear Wall Li	ne Information							Loads C	ver Length of	the Wall	Loa	ds Tributary to E	nd 1	Loads	Tributary to	End 2
SW Segment Mark	I _{Seg} (ft)	h _{sw} (ft)	h _{sw} /I _{seg}	Wall Framing Species	Specific Gravity G	Wall Depth	Interstory of Base?	Wall DL (lb) Wall	Wall LL (lb) Wall	Wall SL (lb) Wall	Wall DL (Ib) End 1	Wall LL (Ib) End 1	Wall SL (lb) End 1	Wall DL (lb) End 2	Wall LL (lb) End 2	Wall SL (lb) End 2
1	8.50	11.00	1.29	HF #2	0.43	xб	Base	2873								
2	6.00	11.00	1.83	HF #2	0.43	x6	Base	804						1		1
				HF #2		x6	Base									
				HF #2		x6	Base								i	

14.50 Depth of Floor Framing at Interstory SW Segments (in) = 0.00

Shear Wall Sur	nmary			
SW Segment Mark	Shear Wall Type	Wall Depth	# of End Studs	Holdown
1	SW-6	x6	2	HDU2 (3075DF,2215H
2	SW-6	x6	2	HDU2 (3075DF,2215H
			2	
			2	

Shear Wall S	chedule (LRFD)			φ _D =	0.8
Shear Wall Type	Sheathing Grade, Sheathing Thickness, & Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, G (Ib/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

Determine Shear Wall Type (LRFD)

	SW Segment Mark	Seismic Shear (plf)	Seismic Aspect Ratio Reduction	Species Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Allowable Shear Increase	Species Reduction	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check	Controlling Shear
ſ	1.00	148	1.00	0.93	159	125	40%	0.93	96	159	SW-6	416	OK	Seismic
[2.00	148	1.00	0.93	159	125	40%	0.93	96	159	SW-6	416	OK	Seismic
[40%				SW-6			
- 1							40%				SW-6			

Determine Shear Wall Overturning Moment Lever Arm

SW Segment Mark	Assumed M _{ot} Lever Arm (ft)	Actual M _{ot} Lever Arm (ft)	% Different	Status	Override Lever Arm?	User Input M _{OT} Lever Arm (ft)	% Different	
1.00	8.50	8.50	0.00%	OK	No			
2.00	6.00	6.00	0.00%	OK	No			
			NA		No			
			NA		No			

Determine Controlling Shear Wall End Axial Compression Load (ASD)

Determine Co	rmine Controlling Shear Wall End Axial Compression Load (ASD) Sds = 0.94																	
SW Segment Mark	Seismic Comp. (Ib)	ASD Seismic Comp. Above (Ib)	Seismic Comp. Total (Ib)	Wind Comp. (Ib)	ASD Wind Comp. Above (Ib)	Wind Comp. Total (lb)	End 1 Dead (Ib)	End 1 Live (Ib)	End 1 Snow (Ib)	End 2 Dead (lb)	End 2 Live (Ib)	End 2 Snow (lb)	End 1 Eq. 16-12		End 2 Eq. 16-12	End 2 Max Eq. 16-13 & 16-14	Controll-ing Comp. Load (Ib)	Controll-ing Lateral Load
1.00	1141	0	1141	822	0	822	282	0	0	282	0	0	1459	1165	1459	1165	1459	Seismic
2.00	1141	0	1141	822	0	822	112	0	0	112	0	0	1267	978	1267	978	1267	Seismic
		0			0													
		0			0													

Determine Number of Shear Wall End Compression Studs (ASD)

Determine Nu	umber of Shear	Wall End Cor	mpression Stu	uds (ASD)											
	C _D =	1.60	C _M =	1.00	C _t =	1.00	c =	0.8			C _b =	1.00			
SW Segment Mark	d (in)	C _F	F _c (psi)	F* _c (psi)	l _e /d	E' _{min} (psi)	F _{cE} (psi)	Cp	F'c (psi)	P' _c (lb)	F _{c⊥} (psi)	F' _c ⊥ (psi)	P' _{c⊥} (lb)	P _{All} per Stud (Ib)	# of End Studs Req'd
1.00	5.50	1.10	1300	2288	23.18	470000	719	0.2904	665	5482	405	405	3341	3341	2
2.00	5.50	1.10	1300	2288	23.18	470000	719	0.2904	665	5482	405	405	3341	3341	2
															2
															2

SW Segment Mark	Seismic Ten. Total (Ib)	Wind Ten. Total (Ib)	End 1 Dead (lb)	End 2 Dead (lb)	End 1 Eq. 16 15	End 1 Eq. 16- 16	End 2 Eq. 16- 15	End 2 Eq. 16 16	Controll-ing Ten. Load (lb)	Controll-ing Lateral Load	Holdown	Holdown Capacity (lb)	Status
1.00	-1141	-822	1437	1437	40	-468	40	-298	-468	Seismic	HDU2 (3075DF,2215HF)	-2215	OK
2.00	-1141	-822	402	402	-581	-952	-581	-905	-952	Seismic	HDU2 (3075DF,2215HF)	-2215	OK
											No HD		
											No HD		
LUNDIN RESIDENCE

4041 West Mercer Way Mercer Island, WA 98040

Quantum Job Number: 18689.01

GRAVITY CALCULATIONS

C-4

Roof =	FL	.eor 2	Garage Floor:	
Dead = 1	BPSf	Dead = 36 PSf	Dead = 6	3Psf
SNOW = 3	BOPS f	Live = 40 Psf	Live = 4	orsf
Covered Terra	ice Floor=	Wall =		
Dead =	topsf	Dead = 11 PSf	LEXT.)	
Live = 6	sopsf	= 9 Psf	cint.)	
UPPEr Roof	Framing-			
D. L=25'-Z"				
Root	16°7L	IBPSF	30 PSF	Fur
(2). L = 25'-2"	C the the			
Roof	16"72	1BPsf	30Psf	Fun
3. L= 13'-2"				
Roof	16" Lc	1BPSf	30 Pit	Fur
@.L=7'-4"				
Roof	13'-2"	1BPSF	30 PSt	Fuu
3. L=13.5				
Roof	7'-2"	18Psf	30Psf	Fur
Wall	1-6"	II PSF		Fur
$\bigcirc L = 2l' - 4''$				
Root	13-2"	IBPCf	30Psf	Fue
Wall	1-61	II PO C		Fu
D. L=11.25'				
Root	13'-2"	1B PSF	30 PS f	Fur
Wall	1.5	11 PCf		Fur

QUANTUM CONSULTING ENGINEERS

residence Lundin IB639.01 project no. 12-10-18 date Qing G-1 designer sheet client CE5 JAYMEE Lundin Sandro checked by

1511 THIRD AVENUE SUITE 323 SEATTLE, WA 98101 TEL 206.957.3900 FAX 206.957.3901 www.quantumce.com

B. L = 8'-2"				
Roof	24" K	1B PSf	30PSF	Fur
(1). L = 22'-0"				
Roof	16" 72	18Psf	30PSf	Fur
(1). L=18-2"				
Roof	11.5'	1BPSF	30PSf	Fur
Wall	115'	11 PSf		Fur
(1), $L = 9'$				
Root	11.5'	18PSf	30PSF	Fun
Wall	1.5'	II PSF		Fun
(2). L= 10.5' C	Au - Au - D			
Roof	8"	IBPSF	30Psf	;Fu
Wall	1.5'	11 PSF		Fu
Point Load	-	1144#	S=1675#	@10.
(3). L = 21'-4"				
Roof	44'	18Psf	30PSf	Fun
Wall	1.5'	11 PSF		Fun
(A). L=14'				
Root	4.4'	18PSF	30 PSF	Fur
Wall	1.5	11 PSF		Fuu
Avening	1.91	IZPSF	30 PS F	Fun
(5).1 - 24'-1"				
		11 20 P	P	
RDOT	13'-2"	IBFYT	30 PS-5	21-4-0
WIQUI	15	II PSt		21-4-+2
Klall		APPE	77 10-0	Fui
Point Load	4.4	3089#	30 PS F 5= 436 1	az1'-4
(16), 1 = 77'				
Roof	7-2"	BPSt	2000 P	12'9"-01
Mall	1.5'	11 PSF		12:01-22
Wall	315	11 Pof		Fur
Point Load		日日 1126年 TING ENGINEERS	30P8 S=1505#	E13-9
1511 Т	HIRD AVENUF	NIN residence	12-10-10 date pro	/ 8689.01 oject no.
SUITE 3	323 F WA 98101		Qino	G-2
TEL 20	06.957.3900	Tavian I	designer she	eet
FAX 20	Jo.957.3901 Jord V II	C-6 Luni	checked by	

 \square

(D. Wind Beam @ Great room! W=7.6 × 39.7 PSf W= 3.5' x11 PSf 11-3" 11-3" Wind Load Gravity Load Interaction EQUATIONS = $\frac{f_{0}}{f_{0}} + \frac{f_{0}}{f_{0}} \le 1.0 \implies \frac{1772 \ Ps_{i}}{2900 \ Ps_{i}} + \frac{139 \ Ps_{i}}{2854 \ Ps_{i}} = 0.66 \ < 1.0 \ OK = 100 \ Ps_{i}$ Twind CGravity $\frac{f_V}{f_V} + \frac{f_V}{f_V} \leq 1.0 \implies \frac{43.6Ps_i}{290Ps_i} + \frac{8.41Ps_i}{290Ps_i} = 0.18 < 1.0 \text{ or}$ Twind CGravity * Use 31/2 ×91/2 PSL Flat @ *see Enercal Attached great room

QUANTUM | CONSULTING ENGINEERS

Lundin Residence IB6B9.01 project no. 12-11-18 project date Qing designer David C-7 Jarmee Lundin Saudro checked by

1511 THIRD AVENUE SUITE 323 SEATTLE, WA 98101 TEL 206.957.3900 FAX 206.957.3901 www.quantumce.com

(B), L= 18'-11" (,)		
FLOOV	16"72	36Psf	40 PSF	Fur
Point Load		610 #	\$ =7 <i>0</i> 6#	@ 11-1
(1). L = 14'-4"				
FLOOR	16 %	36 PSF	40 PSF	Fun
@.L=11.5'				
Floor	16th	40Psf	60PSf	Fun
D. L= 15'				
Floor	13'-4"	36 PSf	40Psf	Fur
2. L=6'				
FLOOV	12.21	36Plf	40 PSF	Fun
3. L= 3'-0"				
Roof	13'-2"	IBPSF	30Psf	Fue
Wall	5'	11 PSF		Fur
LOW ROOF	4.7'	18 PJf	30PSf	Fun
Wall	10	9 PSf	-	Fur
FLOOV	12,2'	36Pst	40Psf	Fur
(24), L=4'				
Roof	16.4'	IBPSF	30Psf	Fun
\Kloul	14:5	11 PSf		Fur
FLOUV	5'	36 Pif	40Psf	Fur
Terrace	6'	40PSf	60Psf	Fur
(5), L=4'				
Root	16.4	18PSf	30PSF	0'-0 2'-9"
Mall	14.5'	11 PSf		Fue
FLOOV	5'	36 PSf	40Psf	Fur
Terrace	6'	40Psf	60 PSf	Fine
PointLoad		988#	S=1547 #	@z'-9"

QUANTUM QUANTUM SUITE 323 SEATTLE, WA 98101 TEL 206.957.3900 FAX 206.957.3901 WWW.quantumce.com WWW.quantumce.com

Lundin	Residence	C.C.	12-11-180	18689.01
			designer	sheet
David S	C-8 AVMEE	Lundin	Sandro checked by	

26, L=9'-0"				
Guardraiz	3.5'	BPSF		Fue
Tervace	6'	40PSf	bopsf	Fur
20. L= 9'-10"				
Wall	14:5'	11 PSF		Fun
FLOOR	7.75'	36P5f	40Pcf	Fun
1 L=14'-0"				
GuardraiL	3.5	BPSF	······································	Fur
FLOOV	2.5	36Psf	40P5f	Fuir
2), L=12,5'				
GuardraiL	3.5	BPSf		4'9'+9'
FLOOV	B	36Psf	40Pcf	Fun
145.1	8"	36pst	40PH	0'+4'-9
STAIV	5'	367>+	40P\$4	9-21215
Point Load		991 #	L= 735#	@4'-9"
30, L=3'-0"				
wall	14.5	9 Psf	· · · · · · · · · · · · · · · · · · ·	0'+ Z'
FLOOV	B.75'	36 PSF	topsf	0'+ 2'
	13.9'	36Pcf	40 P2f	2-3
Point Load		1185#	L= 865#	@Z'
3), L= 7'				
stair	5'-8"	12PSf	40 Psf	Fur
62), L=B'-0"				
Roof	11.5'	1BPSf	30 PSF	Fue
Wall	11.15'	11 PSf		Fur
Garage	Bul	63PSf	40Pst	Fur
3. L= 10.5' C	A			
Wall	10'	11 Psf		Fur
FLOOR	6.3'	63PSf	40Psf	Fur
		852 t		RUSS

1511 THIRD AVENUE SUITE 323 SEATTLE, WA 98101 TEL 206.957.3900 FAX 206.957.3901 www.quantumce.com

QUANTUM CONSULTING ENGINEERS

Lundin Residence IB6B9.01 project no. 12-11-18 date G-5 Qing designer sheet C-JAYMEE David Lundin Sandro checked by

()

	QUANTUM	CONSULTING ENGINEERS		
	1511 THIRD AVENUE SUITE 323	Lundin Residence	12-11-18 date Qing	18689.01 project no.
	SEATTLE, WA 98101 TEL 206.957.3900 FAX 206.957.3901 www.quantumce.com	David & Formee Lundin	designer Sawlro checked by	sheet

20, L=4,3	il		e P	
urter Koot	B,	18Pst	30PSF	Fur
wall		II PS P	-	Fu
Low Roof	B'	18 PSf	.30 PSf	Fur
Wall	10'	9 PSF		Fu
FLOOR	Bu	36PSF	40PSf	Fur
Garase	6	63PSf	40PSf	Fu
Point Load			3000 #	@ 2.7
overturning			W= 3445# E= 21/2 x2965#	@ 6' 3'-
3D. L = 12' C ★				
Wall	3.5'	11 PSF		Fu
FLOOV	B"	40P2f	GOPSF	Fur
Point Load		4734#	L=3336#	@ 12
			S=Z033#	۲۷ ت

QUANTUM CONSULTING ENGINEERS

1511 THIRD AVENUE SUITE 323 SEATTLE, WA 98101 TEL 206.957.3901 FAX 206.957.3901

www.quantumce.com

Lundin project Vesidence 18689.01 project no. 1**Z - 11 - 1 B** date Qing designer G-7 sheet David C-1 Tarmee Lundin Sandro checked by

Overall Length: 26' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	827 @ 4 1/2"	1984 (3.50")	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	805 @ 5 1/2"	2749	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5134 @ 13' 1/2"	12966	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.442 @ 13' 1/2"	0.844	Passed (L/687)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.708 @ 13' 1/2"	1.267	Passed (L/430)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 7" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 25' 10" o/c unless detailed otherwise.

			Bearing		s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.75"	313	522	835	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	4.00"	1.75"	313	522	835	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Loads	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 26' 1"	16"	18.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser com/woodproducts/document-library.

C-12

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

SUSTAINABLE FORESTRY INITIATIVE

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 26' 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1015 @ 13' 10 1/4"	2950 (5.25")	Passed (34%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	493 @ 13' 7 1/2"	2237	Passed (22%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-1296 @ 13' 10 1/4"	5164	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.051 @ 6' 6 3/16"	0.449	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.078 @ 6' 5 1/8"	0.674	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 5" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' 2" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.75"	135	237	372	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	5.50"	3.50"	381	634	1015	Blocking
3 - Stud wall - HF	5.50"	4.00"	1.75"	110	203	313	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 26' 1/2"	16"	18.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 13' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	424 @ 13' 7 1/2"	1156 (1.75")	Passed (37%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	424 @ 13' 7 1/2"	2237	Passed (19%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1404 @ 7'	5164	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.073 @ 7'	0.442	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.117 @ 7'	0.663	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 6' 11" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 13' 6" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.75"	168	280	448	1 1/2" Rim Board
2 - Hanger on 14" LSL beam	3.50"	Hanger ¹	1.75" / - ²	166	277	443	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie Connectors

Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
2 - Face Mount Hanger	IUS2.06/14	2.00"	N/A	12-10d	2-Strong-Grip	None

Loads	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 13' 11"	16"	18.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 7' 10"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2535 @ 1 1/2"	4253 (3.00")	Passed (60%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1618 @ 1' 5"	11646	Passed (14%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	4653 @ 3' 11"	25116	Passed (19%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.032 @ 3' 11"	0.253	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.053 @ 3' 11"	0.379	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 7' 10" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' 10" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	3.00"	3.00"	1.79"	988	1547	2535	Blocking
2 - Stud wall - HF	3.00"	3.00"	1.79"	988	1547	2535	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 7' 10"	N/A	15.3		
1 - Uniform (PSF)	0 to 7' 10" (Top)	13' 2"	18.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1187 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

SUSTAINABLE FORESTRY INITIATIVE

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 5 of 39

Overall Length: 14'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2631 @ 1 1/2"	4253 (3.00")	Passed (62%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2098 @ 1' 5"	11646	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	8882 @ 7'	25116	Passed (35%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.155 @ 7'	0.458	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.271 @ 7'	0.688	Passed (L/610)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 14' o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' o/c unless detailed otherwise.

	Bearing			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	3.00"	3.00"	1.86"	1126	1505	2631	Blocking
2 - Stud wall - HF	3.00"	3.00"	1.86"	1126	1505	2631	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 14'	N/A	15.3		
1 - Uniform (PSF)	0 to 14' (Top)	7' 2"	18.0	30.0	Roof
2 - Uniform (PSF)	0 to 14' (Top)	1' 6"	11.0	-	Wall

Weyerhaeuser Notes

Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 6 of 39

Overall Length: 22' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7450 @ 3"	9568 (4.50")	Passed (78%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	6298 @ 1' 8 1/2"	18676	Passed (34%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	39291 @ 11' 1/2"	60297	Passed (65%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.518 @ 11' 1/2"	0.719	Passed (L/500)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.885 @ 11' 1/2"	1.079	Passed (L/293)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 22' 1" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 22' 1" o/c unless detailed otherwise.

	Bearing			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	4.50"	4.50"	3.50"	3089	4361	7450	Blocking
2 - Stud wall - HF	4.50"	4.50"	3.50"	3089	4361	7450	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 22' 1"	N/A	26.3		
1 - Uniform (PSF)	0 to 22' 1" (Top)	13' 2"	18.0	30.0	Roof
2 - Uniform (PSF)	0 to 22' 1" (Top)	1' 6"	11.0	-	Wall

Weyerhaeuser Notes

Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 11' 10"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3734 @ 3 1/2"	4725 (1.50")	Passed (79%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2960 @ 1' 5 1/2"	11646	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	10502 @ 5' 11"	25116	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.134 @ 5' 11"	0.375	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.225 @ 5' 11"	0.563	Passed (L/601)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 11' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 11' 3" o/c unless detailed otherwise.

	Bearing			Loads	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Hanger on 14" LSL beam	3.50"	Hanger ¹	1.50"	1586	2337	3923	See note 1
2 - Hanger on 14" LSL beam	3.50"	Hanger ¹	1.50"	1586	2337	3923	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie Connectors

Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
1 - Face Mount Hanger	HHUS410	3.00"	N/A	30-10d	10-10d	None
2 - Face Mount Hanger	HHUS410	3.00"	N/A	30-10d	10-10d	None

Landa		Tributary	Dead	Snow	
LOAUS	Location (Side)	width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	3 1/2" to 11' 6 1/2"	N/A	15.3		
1 - Uniform (PSF)	0 to 11' 10" (Top)	13' 2"	18.0	30.0	Roof
2 - Uniform (PSF)	0 to 11' 10" (Top)	1' 6"	11.0	-	Wall

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 9' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	396 @ 5 1/2"	1156 (1.75")	Passed (34%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	396 @ 5 1/2"	1903	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	817 @ 4' 7"	4364	Passed (19%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.029 @ 4' 7"	0.275	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.046 @ 4' 7"	0.412	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' 6" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Hanger on 11 7/8" GLB beam	5.50"	Hanger ¹	1.75" / - ²	165	275	440	See note 1
2 - Stud wall - HF	5.50"	4.00"	1.75"	162	270	432	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie Connectors

Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
1 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10d	2-Strong-Grip	None

Loads	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 9' 1"	24"	18.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 22' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	725 @ 4 1/2"	1731 (3.50")	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	704 @ 5 1/2"	1961	Passed (36%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	3931 @ 11' 5 1/2"	7107	Passed (55%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.563 @ 11' 5 1/2"	0.739	Passed (L/473)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.900 @ 11' 5 1/2"	1.108	Passed (L/295)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 8" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 22' 8" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	4.00"	1.75"	275	458	733	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	4.00"	1.75"	275	458	733	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Loads	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 22' 11"	16"	18.0	30.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser com/woodproducts/document-library.

C-20

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

SUSTAINABLE FORESTRY INITIATIVE

Page 10 of 39

1/9/2019 12:03:21 PM

Beams and joists.4te

Forte v5.4, Design Engine: V7.1.1.3

Overall Length: 18' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5567 @ 3"	16088 (4.50")	Passed (35%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	4610 @ 1' 7 1/2"	16761	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	24953 @ 9' 5 1/2"	46673	Passed (53%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.321 @ 9' 5 1/2"	0.614	Passed (L/689)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.547 @ 9' 5 1/2"	0.921	Passed (L/404)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/360) and TL (L/240).

 ${}^{\bullet}$ Top Edge Bracing (Lu): Top compression edge must be braced at 18' 11" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 18' 11" o/c unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 0.98 that was calculated using length L = 18' 5".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	4.50"	4.50"	1.56"	2304	3263	5567	None
2 - Trimmer - HF	4.50"	4.50"	1.56"	2304	3263	5567	None

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 18' 11"	N/A	20.0		
1 - Uniform (PSF)	0 to 18' 11" (Top)	11' 6"	18.0	30.0	Roof
2 - Uniform (PSF)	0 to 18' 11" (Top)	1' 6"	11.0	-	Wall

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

C-21

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 9' 6 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2726 @ 9' 5"	4253 (3.00")	Passed (64%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2078 @ 1' 3 3/8"	9878	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	6052 @ 4' 10 1/4"	18346	Passed (33%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.084 @ 4' 10 1/4"	0.304	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.141 @ 4' 10 1/4"	0.456	Passed (L/774)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 9' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 9' 3" o/c unless detailed otherwise.

	Bearing		Load	s to Suppor			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Hanger on 11 7/8" LSL beam	3.50"	Hanger ¹	1.50"	1144	1675	2819	See note 1
2 - Stud wall - HF	3.00"	3.00"	1.92"	1109	1617	2726	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

Connector: Simpson Stron	g-Tie Connectors					
Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
1 - Face Mount Hanger	HHUS48	3.00"	N/A	22-10d	8-10d	None

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	3 1/2" to 9' 6 1/2"	N/A	13.0		
1 - Uniform (PSF)	0 to 9' 6 1/2" (Top)	11' 6"	18.0	30.0	Roof
2 - Uniform (PSF)	0 to 9' 6 1/2" (Top)	1' 6"	11.0	-	Wall

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4741 @ 7' 1/4"	6379 (4.50")	Passed (74%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2973 @ 8' 2 3/8"	9878	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	-10226 @ 7' 1/4"	18346	Passed (56%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.195 @ 10' 8 1/2"	0.246	Passed (2L/454)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.330 @ 10' 8 1/2"	0.369	Passed (2L/268)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 10' 9" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 9" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	3.00"	3.00"	1.50"	-470	-829	-1299	Blocking
2 - Stud wall - HF	4.50"	4.50"	3.34"	2058	2683	4741	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 8 1/2"	N/A	13.0		
1 - Uniform (PSF)	0 to 10' 8 1/2" (Top)	8"	18.0	30.0	Roof
2 - Uniform (PSF)	0 to 10' 8 1/2" (Top)	1' 6"	11.0	-	Wall
3 - Point (lb)	10' 6" (Top)	N/A	1144	1675	Point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

C-23

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 22' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2729 @ 3"	9568 (4.50")	Passed (29%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2392 @ 1' 4 3/8"	13861	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	14393 @ 11' 1/2"	34332	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.413 @ 11' 1/2"	0.719	Passed (L/627)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.773 @ 11' 1/2"	1.079	Passed (L/335)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 22' 1" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 22' 1" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	4.50"	4.50"	1.50"	1272	1458	2730	Blocking
2 - Stud wall - HF	4.50"	4.50"	1.50"	1272	1458	2730	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 22' 1"	N/A	19.5		
1 - Uniform (PSF)	0 to 22' 1" (Top)	4' 4 13/16"	18.0	30.0	Roof
2 - Uniform (PSF)	0 to 22' 1" (Top)	1' 6"	11.0	-	Wall

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 14 of 39

Overall Length: 14' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2324 @ 1 1/2"	4253 (3.00")	Passed (55%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1926 @ 1' 2 7/8"	9878	Passed (20%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	8135 @ 7' 3"	18346	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.249 @ 7' 3"	0.475	Passed (L/687)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.422 @ 7' 3"	0.712	Passed (L/405)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 14' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 6" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	3.00"	3.00"	1.64"	953	1370	2323	Blocking
2 - Stud wall - HF	3.00"	3.00"	1.64"	953	1370	2323	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 14' 6"	N/A	13.0		
1 - Uniform (PSF)	0 to 14' 6" (Top)	4' 4 13/16"	18.0	30.0	Roof
2 - Uniform (PSF)	0 to 14' 6" (Top)	1' 6"	11.0	-	Wall
3 - Uniform (PSF)	0 to 14' 6" (Top)	1' 10 13/16"	12.0	30.0	Awning

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence
	C-25

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 24' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11987 @ 24' 7"	12251 (5.50")	Passed (98%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	10062 @ 22' 10"	21790	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	34238 @ 16' 1/8"	74724	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.317 @ 13' 2 1/2"	0.811	Passed (L/920)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.605 @ 13' 1 7/16"	1.217	Passed (L/482)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 24' 11" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 24' 11" o/c unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 0.93 that was calculated using length L = 24' 4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	4.50"	4.50"	1.98"	2193	2221	4414	Blocking
2 - Stud wall - HF	5.50"	5.50"	5.38"	5291	6696	11987	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 24' 11"	N/A	26.1		
1 - Uniform (PSF)	21' 8 1/2" to 24' 11" (Top)	13' 2"	18.0	30.0	Roof
2 - Uniform (PSF)	21' 8 1/2" to 24' 11" (Top)	1' 6"	11.0	-	Wall
3 - Uniform (PSF)	0 to 24' 11" (Top)	3' 6"	11.0	-	Wall
4 - Uniform (PSF)	0 to 24' 11" (Top)	4' 4 13/16"	18.0	30.0	Lower roof
5 - Point (lb)	21' 8 1/2" (Top)	N/A	3089	4361	Point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

C-26

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

SUSTAINABLE FORESTRY INITIATIVE

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 16 of 39

Overall Length: 22' 9"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7319 @ 22' 6"	10024 (4.50")	Passed (73%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	6046 @ 20' 9"	21790	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	37647 @ 14' 1 1/2"	75395	Passed (50%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.269 @ 11' 10 7/8"	0.742	Passed (L/993)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.506 @ 11' 10 5/16"	1.112	Passed (L/528)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 22' 9" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 22' 9" o/c unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 0.94 that was calculated using length L = 22' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

		Bearing		Load	s to Suppor		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	4.50"	4.50"	2.11"	2289	2407	4696	Blocking
2 - Stud wall - HF	4.50"	4.50"	3.29"	3363	3956	7319	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 22' 9"	N/A	26.1		
1 - Uniform (PSF)	14' 1 1/2" to 22' 9" (Top)	7' 2"	18.0	30.0	Roof
2 - Uniform (PSF)	14' 1 1/2" to 22' 9" (Top)	1' 6"	11.0	-	Wall
3 - Uniform (PSF)	0 to 22' 9" (Top)	3' 6"	11.0	-	Wall
4 - Uniform (PSF)	0 to 22' 9" (Top)	4' 4 13/16"	18.0	30.0	Lower roof
5 - Point (lb)	14' 1 1/2" (Top)	N/A	1126	1505	Point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 17 of 39

C-27

Lic. # : KW-06005835

Description : Wind beam at gread room - wind (Beam 17)

CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2015

Material Properties

Analysis Method : Allowable Stress Design	Fb +	2,900.0 psi	E : Modulus of Elasticity			
Load Combination IBC 2015	Fb -	2,900.0 psi	Ebend- xx	2,000.0 ksi		
	Fc - Prll	2,900.0 psi	Eminbend - xx	1,016.54 ksi		
Wood Species il evel Truss Joist	Fc - Perp	750.0 psi				
Wood Grade Parallam PSL 2.0F	Fv .	290.0 psi				
	Ft	2,025.0 psi	Density	32.210 pcf		
Beam Bracing : Completely Unbraced			,			

Applied Loads			Service loads entered. Load F	actors will be	e applied for calculations.
Uniform Load : W = 0.3017 , Tributa	ry Width =	1.0 ft, (Wind)		\sim	mm
DESIGN SUMMARY					Design N.G.
Maximum Bending Stress Ratio	=	0.382 1	Maximum Shear Stress Ratio		
Section used for this span		9.50 X 3.50	Section used for this span		9.50 X 3.50
fb : Actual	=	1,771.80psi	fv : Actual	= /	43.59 psi
FB : Allowable	=	4,640.00psi	Fv : Allowable	= /	464.00 psi
Load Combination		+D+0.60W+H	Load Combination		+D+0.60W+H
Location of maximum on span	=	5.625ft	Location of maximum on span	=/	10.963 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	ŧ	Span # 1
Maximum Deflection			\sim		
Max Downward Transient Deflec	tion	1.611 in Rati	o = ≻ 83 <360	· · · · · ·	
Max Upward Transient Deflection	۱	0.000 in Rati	o = (0 < 360) See follow	ling deflect	tion calculation. Per
Max Downward Total Deflection		0.967 in Rati	o = (139 < 3) = 139 < 3) = 180 = 139 < 3) = 1000 = 100 = 100 = 100 = 100 = 100 = 100 = 1	table 1604	4.3, footnote f, the wind
Max Upward Total Deflection		0.000 in Rati	$\circ = \gamma 0 < 360.0$ load is per	rmitted to b	be taken as 0.42 times
			the "comp	onent and	cladding" loads for the
				f determini	ing deflection limits

Maximum Forces & Stresses for Load Combinations

Load Combination	Max Stress Ratios		Max Stress Ratios								Moment Values			Shear Values		
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	C ^L	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00
Length = 11.250 ft	1			0.90	1.000	1.00	1.00	1.00	1.00	1.00			2610.00	0.00	0.00	261.00
+D+L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.00	1.000	1.00	1.00	1.00	1.00	1.00			2900.00	0.00	0.00	290.00
+D+Lr+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.25	1.000	1.00	1.00	1.00	1.00	1.00			3625.00	0.00	0.00	362.50
+D+S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.15	1.000	1.00	1.00	1.00	1.00	1.00			3335.00	0.00	0.00	333.50
+D+0.750Lr+0.750L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.25	1.000	1.00	1.00	1.00	1.00	1.00			3625.00	0.00	0.00	362.50
+D+0.750L+0.750S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.15	1.000	1.00	1.00	1.00	1.00	1.00			3335.00	0.00	0.00	333.50

Project Title: Engineer: Project ID: Project Descr:

Printed: 7 JAN 2019, 12:02PM

File = M:\Stuart Silk\18689 - Lundin Residence\Calculations\Gravity\Wind Beam.ec6

Software copyright ENERCALC, INC. 1983-2018, Build:10.18.9.24 . Licensee : QUANTUM CONSULTING ENGINEERS

C-28

Printed: 7 JAN 2019, 12:02PM

File = M:\Stuart Silk\18689 - Lundin Residence\Calculations\Gravity\Wind Beam.ec6 .
Software copyright ENERCALC, INC. 1983-2018, Build:10.18.9.24 .
Licensee : QUANTUM CONSULTING ENGINEERS

Lic. # : KW-06005835
Description Wind beam at gread room - wind (Beam 1)

Load Combination		Max Stre	ss Ratios								Mor	ment Values			Shear Va	alues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	С _т	C t	СL	М	fb	F'b	V	fv	F'v
+D+0.60W+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.382	0.094	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.86	1,771.80	4640.00	0.97	43.59	464.00
+D+0.70E+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.60	1.000	1.00	1.00	1.00	1.00	1.00			4640.00	0.00	0.00	464.00
+D+0.750Lr+0.750L+0.4	450W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.286	0.070	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.15	1,328.85	4640.00	0.72	32.69	464.00
+D+0.750L+0.750S+0.4	50W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.286	0.070	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.15	1,328.85	4640.00	0.72	32.69	464.00
+D+0.750L+0.750S+0.5	250E+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.60	1.000	1.00	1.00	1.00	1.00	1.00			4640.00	0.00	0.00	464.00
+0.60D+0.60W+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.382	0.094	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.86	1,771.80	4640.00	0.97	43.59	464.00
+0.60D+0.70E+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.60	1.000	1.00	1.00	1.00	1.00	1.00			4640.00	0.00	0.00	464.00
Overall Maxim	num De	eflectio	ons													
Load Combination		:	Span	Max. "-'	Defl	Locatio	n in Spar	ı l	oad Co	mbinatio	on		Max. "+	" Defl L	ocation ir	n Span
W Only			1	1.6	5111		5.666						0.	0000	0.	000
Vertical React	tions						Sup	port not	ation : F	ar left is	#1		Values in I	<ips< td=""><td></td><td></td></ips<>		
Load Combination					Suppor	t1 Su	pport 2									
Overall MAXimum					1.6	97	1.697									
Overall MINimum					1.6	97	1.697									
+D+H																
+D+L+H																
+D+Lr+H																
+D+S+H																
+D+0.750Lr+0.750L+	-H															
+D+0.750L+0.750S+	Н															
+D+0.60W+H					1.0)18	1.018									
+D+0.70E+H																
+D+0.750Lr+0.750L+	-0.450W+H	4			0.7	64	0.764									
+D+0.750L+0.750S+	0.450W+H				0.7	64	0.764									
+D+0.750L+0.750S+	0.5250E+H	4														
+0.60D+0.60W+0.60	Н				1.0)18	1.018									
+0.60D+0.70E+0.60H	4															
D Only																
Lr Only																
L Only																
S Only																
W Only					1.6	97	1.697									
E Only																

H Only

Printed: 7 JAN 2019, 12:02PM

File = M:\Stuart Silk\18689 - Lundin Residence\Calculations\Gravity\Wind Beam.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.9.24 . Licensee : QUANTUM CONSULTING ENGINEERS

Lic. # : KW-06005835 Description : Wind beam at gread room - deflection (Beam 17)

CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2015

Material Properties

Analysis Method : Allowable Stress Design	Fb +	2,900.0 psi	E : Modulus of Elas	ticity	
Load Combination IBC 2015	Fb -	2,900.0 psi	Ebend- xx	2,000.0ksi	
	Fc - Prll	2,900.0 psi	Eminbend - xx	1,016.54 ksi	
Wood Species · il evel Truss Joist	Fc - Perp	750.0 psi			
Wood Grade : Parallam PSL 2.0E	Fv .	290.0 psi			
	Ft	2,025.0 psi	Density	32.210 pcf	
Beam Bracing : Completely Unbraced		•	,		

Applied Loads Service loads entered. Load Factors will be applied for calculations.

Uniform Load : W = 0.1270 , Tributary Width = 1.0 ft, (Wind)

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable	= = =	0.161 : 1 9.50 X 3.50 745.84psi 4,640.00psi	Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable	= = =	0.040 : 1 9.50 X 3.50 18.35 psi 464.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+0.60W+H 5.625ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+0.60W+H 10.963 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	tion า	0.678 in Ratio 0.000 in Ratio 0.407 in Ratio 0.000 in Ratio	= 199>=180. = 0<180.0 = 331>=180. = 0<180.0		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stress Ratios			Max Stress Ratios			Max Stress Ratios						Mom	ent Values	Shear Values		
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL_	М	fb	F'b	V	fv	F'v		
+D+H													0.00	0.00	0.00	0.00		
Length = 11.250 ft	1			0.90	1.000	1.00	1.00	1.00	1.00	1.00			2610.00	0.00	0.00	261.00		
+D+L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00		
Length = 11.250 ft	1			1.00	1.000	1.00	1.00	1.00	1.00	1.00			2900.00	0.00	0.00	290.00		
+D+Lr+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00		
Length = 11.250 ft	1			1.25	1.000	1.00	1.00	1.00	1.00	1.00			3625.00	0.00	0.00	362.50		
+D+S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00		
Length = 11.250 ft	1			1.15	1.000	1.00	1.00	1.00	1.00	1.00			3335.00	0.00	0.00	333.50		
+D+0.750Lr+0.750L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00		
Length = 11.250 ft	1			1.25	1.000	1.00	1.00	1.00	1.00	1.00			3625.00	0.00	0.00	362.50		
+D+0.750L+0.750S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00		
Length = 11.250 ft	1			1.15	1.000	1.00	1.00	1.00	1.00	1.00			3335.00	0.00	0.00	333.50		

Wood Beam Lic. # : KW-06005835

Printed: 7 JAN 2019, 12:02PM

File = M:\Stuart Silk\18689 - Lundin Residence\Calculations\Gravity\Wind Beam.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.9.24 . Licensee : QUANTUM CONSULTING ENGINEERS

Description : Wind beam at gread room - deflection (Beam 17)

Load Combination		Max Stress Ratios									Mom	ent Values			Shear Values	
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	c _l _	М	fb	F'b	V	fv	F'v
+D+0.60W+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.161	0.040	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.21	745.84	4640.00	0.41	18.35	464.00
+D+0.70E+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.60	1.000	1.00	1.00	1.00	1.00	1.00			4640.00	0.00	0.00	464.00
+D+0.750Lr+0.750L+0.4	150W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.121	0.030	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.90	559.38	4640.00	0.31	13.76	464.00
+D+0.750L+0.750S+0.4	50W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.121	0.030	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.90	559.38	4640.00	0.31	13.76	464.00
+D+0.750L+0.750S+0.5	250E+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.60	1.000	1.00	1.00	1.00	1.00	1.00			4640.00	0.00	0.00	464.00
+0.60D+0.60W+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.161	0.040	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.21	745.84	4640.00	0.41	18.35	464.00
+0.60D+0.70E+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1			1.60	1.000	1.00	1.00	1.00	1.00	1.00			4640.00	0.00	0.00	464.00
Overall Maxim	num De	flectio	ns													
Load Combination		S	Span	Max. "-'	Defl	Location	n in Spar	n L	oad Co	nbinatio	on		Max. "+	" Defl	Location ir	Span
W Only			1	0.6	5782		5.666						0.0	0000	0.	000
Vertical React	tions						Sup	port not	ation : Fa	ar left is	#1		Values in I	KIPS		
Load Combination					Suppor	1 Su	pport 2									
Overall MAXimum					0.7	14	0.714									
Overall MINimum					0.7	14	0.714									
+D+H																
+D+L+H																
+D+Lr+H																
+D+S+H																
+D+0.750Lr+0.750L+	Н															
+D+0.750L+0.750S+	Н															
+D+0.60W+H					0.4	29	0.429									
+D+0.70E+H																
+D+0.750Lr+0.750L+	0.450W+H				0.3	21	0.321									
+D+0.750L+0.750S+	0.450W+H				0.3	21	0.321									
+D+0.750L+0.750S+	0.5250E+H	ł														
+0.60D+0.60W+0.60	Н				0.4	29	0.429									
+0.60D+0.70E+0.60H	1															
D Only																
Lr Only																
L Only																

S Only		
W Only	0.714	0.714
E Only		
H Only		

Lic. # : KW-06005835

Description : Wind beam at great room - gravity (Beam 17)

CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2015

Material Properties

Analysis Method : Allowable Stress Design	Fb +	2,900.0 psi	E : Modulus of Elasticity		
Load Combination IBC 2015	Fb -	2,900.0 psi	Ebend- xx	2,000.0 ksi	
	Fc - Prll	2,900.0 psi	Eminbend - xx	1,016.54 ksi	
Wood Species il evel Truss Joist	Fc - Perp	750.0 psi			
Wood Grade : Parallam PSL 2.0E	Fv	290.0 psi			
	Ft	2,025.0 psi	Density	32.210 pcf	
Beam Bracing : Completely Unbraced					

Applied Loads Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.03850 , Tributary Width = 1.0 ft, (Wind)

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span fb : Actual FB : Allowable	= = =	0.053 1 1 3.5x9.5 138.83psi 2,607.26psi	Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable	= = =	0.032 : 1 3.5x9.5 8.41 psi 261.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+H 5.625ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+H 10.470 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	n	0.000 in Ratio 0.000 in Ratio 0.028 in Ratio 0.000 in Ratio	= 0 < 360 = 0 < 360 = 4837 >= 360. = 0 < 360.0		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stres	s Ratios								Mom	ent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	C ^L	М	fb	F'b	V	fv	F'v
+D+H													0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.053	0.032	0.90	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	2607.26	0.19	8.41	261.00
+D+L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.048	0.029	1.00	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	2896.61	0.19	8.41	290.00
+D+Lr+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.038	0.023	1.25	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	3619.67	0.19	8.41	362.50
+D+S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.042	0.025	1.15	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	3330.50	0.19	8.41	333.50
+D+0.750Lr+0.750L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.038	0.023	1.25	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	3619.67	0.19	8.41	362.50
+D+0.750L+0.750S+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.042	0.025	1.15	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	3330.50	0.19	8.41	333.50

Project Title: Engineer: Project ID: Project Descr:

Printed: 7 JAN 2019, 12:03PM

File = M:\Stuart Silk\18689 - Lundin Residence\Calculations\Gravity\Wind Beam.ec6

Software copyright ENERCALC, INC. 1983-2018, Build:10.18.9.24 . Licensee : QUANTUM CONSULTING ENGINEERS

Lic. # : KW-06005835

Printed: 7 JAN 2019, 12:03PM

File = M:\Stuart Silk\18689 - Lundin Residence\Calculations\Gravity\Wind Beam.ec6 . Software copyright ENERCALC, INC. 1983-2018, Build:10.18.9.24 . Licensee : QUANTUM CONSULTING ENGINEERS

Description : Wind beam at great room - gravity (Beam 17)

Load Combination		Max Stress	s Ratios								Mom	ent Values			Shear Va	lues
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	с _г _	М	fb	F'b	V	fv	F'v
+D+0.60W+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.030	0.018	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	4631.20	0.19	8.41	464.00
+D+0.70E+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.030	0.018	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	4631.20	0.19	8.41	464.00
+D+0.750Lr+0.750L+0.4	450W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.030	0.018	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	4631.20	0.19	8.41	464.00
+D+0.750L+0.750S+0.4	50W+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.030	0.018	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	4631.20	0.19	8.41	464.00
+D+0.750L+0.750S+0.5	250E+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.030	0.018	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.61	138.83	4631.20	0.19	8.41	464.00
+0.60D+0.60W+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.018	0.011	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.37	83.30	4631.20	0.11	5.05	464.00
+0.60D+0.70E+0.60H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 11.250 ft	1	0.018	0.011	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.37	83.30	4631.20	0.11	5.05	464.00
Overall Maxin	num De	flectio	ns													

Load Combination Load Combination Max. "-" Defl Max. "+" Defl Span Location in Span Location in Span D Only 0.0279 5.666 0.0000 0.000 1 Earloft ic #1 Val ...

Vertical Reactions		Suppo	ort notation : Far left is # I	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	0.217	0.217			
Overall MINimum	0.217	0.217			
+D+H	0.217	0.217			
+D+L+H	0.217	0.217			
+D+Lr+H	0.217	0.217			
+D+S+H	0.217	0.217			
+D+0.750Lr+0.750L+H	0.217	0.217			
+D+0.750L+0.750S+H	0.217	0.217			
+D+0.60W+H	0.217	0.217			
+D+0.70E+H	0.217	0.217			
+D+0.750Lr+0.750L+0.450W+H	0.217	0.217			
+D+0.750L+0.750S+0.450W+H	0.217	0.217			
+D+0.750L+0.750S+0.5250E+H	0.217	0.217			
+0.60D+0.60W+0.60H	0.130	0.130			
+0.60D+0.70E+0.60H	0.130	0.130			
D Only	0.217	0.217			
Lr Only					
L Only					
S Only					
W Only					
E Only					
H Only					

Overall Length: 19' 8 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2230 @ 11' 7 1/4"	2950 (5.25")	Passed (76%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1645 @ 11'	2519	Passed (65%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	-1459 @ 11' 7 1/4"	5140	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.027 @ 5' 7 1/4"	0.225	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.055 @ 5' 7 5/16"	0.281	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	68	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 2" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' 3" o/c unless detailed otherwise.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

		Bearing			Loads to S	s)		
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.75"	249	275/-15	17	541/-15	Blocking
2 - Stud wall - HF	5.50"	5.50"	3.50"	1207	652	712	2571	Blocking
3 - Hanger on 16" LSL beam	3.50"	Hanger ¹	1.75" / - ²	100	203/-48	-29	303/-77	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories			
3 - Face Mount Hanger	IUS2.06/11.88	2.00"	N/A	10-10d	2-10dx1.5	Web Stiffeners			

Loads	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to 19' 8 1/2"	16"	36.0	40.0	-	Residential - Living Areas
2 - Point (lb)	11'	N/A	610	-	700	Point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

SUSTAINABLE FORESTRY INITIATIVE

C-34

Overall Length: 15' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	773 @ 14' 10 1/2"	1460 (3.50")	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	726 @ 5 1/2"	2190	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2663 @ 7' 7 1/2"	5140	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.089 @ 7' 7 1/2"	0.290	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.168 @ 7' 7 1/2"	0.363	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	62	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 5' 4" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 15' 1" o/c unless detailed otherwise.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	3.75"	1.75"	366	407	773	1 3/4" Rim Board
2 - Stud wall - HF	5.50"	5.50"	1.75"	366	407	773	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to 15' 3"	16"	36.0	40.0	Residential - Living Areas

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 12' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	828 @ 12' 1/2"	1460 (3.50")	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	767 @ 5 1/2"	1945	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2269 @ 6' 2 1/2"	4490	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.080 @ 6' 2 1/2"	0.233	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.133 @ 6' 2 1/2"	0.292	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	65	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 5' 4" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' 3" o/c unless detailed otherwise.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

Bearing			Load	s to Suppor			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	3.75"	1.75"	331	497	828	1 3/4" Rim Board
2 - Stud wall - HF	5.50"	5.50"	1.75"	331	497	828	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to 12' 5"	16"	40.0	60.0	Terrace

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 20 of 39
Overall Length: 15' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8273 @ 4"	11694 (5.50")	Passed (71%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6411 @ 1' 9 1/2"	16240	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	30221 @ 7' 11 1/2"	52432	Passed (58%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.184 @ 7' 11 1/2"	0.305	Passed (L/995)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.359 @ 7' 11 1/2"	0.381	Passed (L/510)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 15' 11" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 15' 11" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	3.89"	4029	4244	8273	Blocking
2 - Stud wall - HF	5.50"	5.50"	3.89"	4029	4244	8273	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 15' 11"	N/A	26.3		
1 - Uniform (PSF)	0 to 15' 11" (Top)	13' 4"	36.0	40.0	Residential - Living Areas

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 21 of 39

Overall Length: 6' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3056 @ 1 1/2"	10313 (3.00")	Passed (30%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2077 @ 1' 1/2"	5922	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	4592 @ 3' 3"	6032	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.033 @ 3' 3"	0.125	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.063 @ 3' 3"	0.156	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 6' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 6" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1470	1586	3056	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	1470	1586	3056	None

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 6"	N/A	13.2		
1 - Uniform (PSF)	0 to 6' 6"	12' 2 3/8"	36.0	40.0	Residential - Living Areas

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

SUSTAINABLE FORESTRY INITIATIVE

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence
	C-38

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 3' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2923 @ 1 1/2"	4253 (3.00")	Passed (69%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1496 @ 10 1/4"	2918	Passed (51%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	2205 @ 1' 9"	3247	Passed (68%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.013 @ 1' 9"	0.065	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.029 @ 1' 9"	0.081	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 3' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 6" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

	Bearing				Loads to S			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	2.06"	1579	854	938	3371	None
2 - Trimmer - HF	3.00"	3.00"	2.06"	1579	854	938	3371	None

		Tributary	Dead	Floor Live	Snow	
Loads	Location (Side)	Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	6.4			
1 - Uniform (PSF)	0 to 3' 6"	13' 2"	18.0	-	30.0	Upper roof
2 - Uniform (PSF)	0 to 3' 6"	5'	11.0	-	-	Wall
3 - Uniform (PSF)	0 to 3' 6"	4' 8 3/8"	18.0	-	30.0	Low roof
4 - Uniform (PSF)	0 to 3' 6"	10'	8.0	-	-	Wall
5 - Uniform (PSF)	0 to 3' 6"	12' 2 3/8"	36.0	40.0	-	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 23 of 39

Overall Length: 4' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3762 @ 1 1/2"	6563 (3.00")	Passed (57%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2055 @ 1' 1/4"	4468	Passed (46%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	3775 @ 2' 3"	5166	Passed (73%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.016 @ 2' 3"	0.085	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.033 @ 2' 3"	0.106	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 6" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

	Bearing				Loads to S	s)		
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.72"	1987	1260	1107	4354	None
2 - Trimmer - HF	3.00"	3.00"	1.72"	1987	1260	1107	4354	None

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 6"	N/A	8.2			
1 - Uniform (PSF)	0 to 4' 6"	16' 4 13/16"	18.0	-	30.0	Roof
2 - Uniform (PSF)	0 to 4' 6"	14' 6"	11.0	-	-	Wall
3 - Uniform (PSF)	0 to 4' 6"	5'	36.0	40.0	-	Floor
4 - Uniform (PSF)	0 to 4' 6"	6'	40.0	60.0	-	Terrace

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence
	• • • •

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

C-40

Overall Length: 4' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4366 @ 4' 4 1/2"	6563 (3.00")	Passed (67%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3338 @ 3' 5 3/4"	4468	Passed (75%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	5027 @ 2' 6 15/16"	5166	Passed (97%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.021 @ 2' 3 1/4"	0.085	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.044 @ 2' 3 3/16"	0.106	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 6" o/c unless detailed otherwise.

• Applicable calculations are based on NDS.

	Bearing				Loads to S			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.97"	2241	1260	1498	4999	None
2 - Trimmer - HF	3.00"	3.00"	2.00"	2278	1260	1525	5063	None

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 6"	N/A	8.2			
1 - Uniform (PSF)	0 to 3'	16' 4 13/16"	18.0	-	30.0	Roof
2 - Uniform (PSF)	0 to 4' 6"	14' 6"	11.0	-	-	Wall
3 - Uniform (PSF)	0 to 4' 6"	5'	36.0	40.0	-	Floor
4 - Uniform (PSF)	0 to 4' 6"	6'	40.0	60.0	-	Terrace
5 - Point (lb)	3'	N/A	988	-	1547	Point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 25 of 39

Overall Length: 9' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3032 @ 1 1/2"	7613 (3.00")	Passed (40%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2367 @ 1' 1/2"	6872	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6828 @ 4' 9"	10422	Passed (66%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.170 @ 4' 9"	0.185	Passed (L/652)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.302 @ 4' 9"	0.302	Passed (L/368)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/368).

• Top Edge Bracing (Lu): Top compression edge must be braced at 9' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 9' 6" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1322	1710	3032	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	1322	1710	3032	None

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 6"	N/A	10.4		
1 - Uniform (PSF)	0 to 9' 6"	3' 6"	8.0	-	Guardrail
2 - Uniform (PSF)	0 to 9' 6"	6'	40.0	60.0	Terrace

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

C-42

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

SUSTAINABLE FORESTRY INITIATIVE

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 10' 4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3934 @ 1 1/2"	7613 (3.00")	Passed (52%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2990 @ 1' 2 7/8"	8590	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9678 @ 5' 2"	15953	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.109 @ 5' 2"	0.202	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.269 @ 5' 2"	0.269	Passed (L/451)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/450).

• Top Edge Bracing (Lu): Top compression edge must be braced at 10' 4" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 4" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.55"	2333	1602	3935	None
2 - Trimmer - HF	3.00"	3.00"	1.55"	2333	1602	3935	None

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 4"	N/A	13.0		
1 - Uniform (PSF)	0 to 10' 4"	14' 6"	11.0	-	Wall
2 - Uniform (PSF)	0 to 10' 4"	7' 9"	36.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

SUSTAINABLE FORESTRY INITIATIVE

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence
	C-43

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 14' 9"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1663 @ 14' 5 1/2"	4725 (1.50")	Passed (35%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1349 @ 13' 1 1/2"	11573	Passed (12%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5873 @ 7' 4 3/4"	28178	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.055 @ 7' 4 3/4"	0.282	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.130 @ 7' 4 3/4"	0.353	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 14' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 6" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	1002	740	1742	Blocking
2 - Hanger on 16" LSL beam	3.50"	Hanger ¹	1.50"	991	735	1726	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie Connectors										
Support Model Seat Length			Top Nails	Face Nails	Member Nails	Accessories				
2 - Face Mount Hanger	LUS414	2.00"	N/A	10-10d	6-10d	None				

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 14' 5 1/2"	N/A	17.5		
1 - Uniform (PSF)	0 to 14' 9" (Top)	3' 6"	8.0	-	Guardrail
2 - Uniform (PSF)	0 to 14' 9" (Top)	2' 6"	36.0	40.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product/literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 13' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2403 @ 12' 11 1/2"	4725 (1.50")	Passed (51%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1857 @ 1' 9 1/2"	11573	Passed (16%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	7808 @ 4' 9"	28178	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.058 @ 6' 6 5/8"	0.252	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.134 @ 6' 6 1/4"	0.316	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 13' o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 13' o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	1185	885	2070	Blocking
2 - Hanger on 16" LSL beam	3.50"	Hanger ¹	1.50"	1270	1092	2362	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Stron	g-Tie Connectors					
Support	Model	Seat Length	Top Nails	Face Nails	Member Nails	Accessories
2 - Face Mount Hanger	THAC418	1.78"	N/A	16-16d	6-16d	None

C-45

		Tributary	Dead	Floor Live	
Loads	Location (Side)	Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 11 1/2"	N/A	17.5		
1 - Uniform (PSF)	4' 9" to 9' (Top)	3' 6"	8.0	-	Guardrail
2 - Uniform (PSF)	0 to 13' 3" (Top)	8"	36.0	40.0	Floor
3 - Uniform (PSF)	0 to 4' 9" (Top)	8"	36.0	40.0	Floor
4 - Uniform (PSF)	9' to 13' 3" (Top)	5'	36.0	40.0	Stair
5 - Point (lb)	4' 9" (Top)	N/A	991	735	Point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

SUSTAINABLE FORESTRY INITIATIVE

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 3' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3032 @ 3' 4 1/2"	4253 (3.00")	Passed (71%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2124 @ 2' 7 3/4"	2538	Passed (84%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2589 @ 2' 3"	2823	Passed (92%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.014 @ 1' 9 7/16"	0.065	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.031 @ 1' 9 3/8"	0.081	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 3' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 6" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.53"	1212	959	2171	None
2 - Trimmer - HF	3.00"	3.00"	2.14"	1624	1409	3033	None

		Tributary	Dead	Floor Live	
Loads	Location (Side)	Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	6.4		
1 - Uniform (PSF)	0 to 2' 3"	14' 6"	9.0	-	Wall
2 - Uniform (PSF)	0 to 2' 3"	8' 9"	36.0	40.0	Floor
3 - Uniform (PSF)	2' 3" to 3' 6"	13' 10 13/16"	36.0	40.0	Floor
4 - Point (lb)	2' 3"	N/A	1185	885	Point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 30 of 39

C-46

Overall Length: 7' 9"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1148 @ 7' 7"	4961 (3.50")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	827 @ 1' 2 3/4"	3238	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1990 @ 3' 11 1/2"	4242	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.047 @ 3' 11 1/2"	0.145	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.063 @ 3' 11 1/2"	0.181	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 7' 9" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' 9" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

	Bearing			Loads	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	302	897	1199	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	289	859	1148	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 7' 9"	N/A	8.2		
1 - Uniform (PSF)	0 to 7' 9" (Top)	5' 8"	12.0	40.0	Stair

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

C-47

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

SUSTAINABLE FORESTRY INITIATIVE

1/9/2019 12:03:21 PM

Beams and joists.4te

Forte v5.4, Design Engine: V7.1.1.3

Overall Length: 8' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3118 @ 1 1/2"	7613 (3.00")	Passed (41%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2354 @ 1' 1/2"	7902	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	6242 @ 4' 3"	11985	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.106 @ 4' 3"	0.165	Passed (L/935)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.225 @ 4' 3"	0.225	Passed (L/440)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/440).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' 6" o/c unless detailed otherwise.

	Bearing			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1652	113	1466	3231	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	1652	113	1466	3231	None

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 6"	N/A	10.4			
1 - Uniform (PSF)	0 to 8' 6"	11' 6"	18.0	-	30.0	Roof
2 - Uniform (PSF)	0 to 8' 6"	11' 9"	11.0	-	-	Wall
3 - Uniform (PSF)	0 to 8' 6"	8"	63.0	40.0	-	Garage

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 32 of 39

Overall Length: 10' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7815 @ 6' 10 3/4"	9568 (4.50")	Passed (82%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2894 @ 5' 6 1/2"	14210	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	-8844 @ 6' 10 3/4"	40743	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.020 @ 10' 7"	0.200	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.066 @ 10' 7"	0.200	Passed (2L/999+)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

Overhang deflection criteria: LL (0.2") and TL (0.2").

• Top Edge Bracing (Lu): Top compression edge must be braced at 10' 7" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 7" o/c unless detailed otherwise.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.00"	3.00"	1.50"	874	885/-321	1759/-321	Blocking
2 - Stud wall - HF	4.50"	4.50"	3.68"	5585	2230	7815	Blocking
Placking Banals are assumed to carry a	a laade an	plied directly of	nove them and the	a full load ic	applied to th	a mambar bai	a decianed

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 7"	N/A	23.0		
1 - Uniform (PSF)	0 to 10' 7" (Top)	10'	11.0	-	Wall
2 - Uniform (PSF)	0 to 10' 7" (Top)	6' 3 5/8"	63.0	40.0	Floor
3 - Point (lb)	10' 6" (Top)	N/A	852	127	Point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 33 of 39

Overall Length: 12' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	624 @ 4 1/2"	2658 (3.75")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	455 @ 1' 9 1/2"	5320	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1752 @ 6' 2 1/2"	16179	Passed (11%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.016 @ 6' 2 1/2"	0.233	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.041 @ 6' 2 1/2"	0.292	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	72	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 12' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' 3" o/c unless detailed otherwise.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

· A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing			Loads	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	3.75"	1.50"	391	248	639	1 3/4" Rim Board
2 - Stud wall - HF	5.50"	5.50"	1.50"	391	248	639	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to 12' 5"	12"	63.0	40.0	Garage

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence
	C-50

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 12' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1492 @ 4 1/2"	2658 (3.75")	Passed (56%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1323 @ 1' 9 1/2"	5320	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6977 @ 6' 3"	16179	Passed (43%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.116 @ 6' 3"	0.233	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.141 @ 6' 3"	0.292	Passed (L/990)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	72	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 7' 10" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' 3" o/c unless detailed otherwise.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	3.75"	2.11"	391	1116	1507	1 3/4" Rim Board
2 - Stud wall - HF	5.50"	5.50"	1.99"	391	1020	1411	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to 12' 5"	12"	63.0	-	Garage
2 - Uniform (PSF)	0 to 3' 9"	12"	-	40.0	Garage - Live load
3 - Point (lb)	6' 3"	N/A	-	1986	Vehicle

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 35 of 39

Overall Length: 12' 5"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2316 @ 12' 1/2"	3898 (5.50")	Passed (59%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2203 @ 10' 7 1/2"	5320	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3413 @ 8' 6 3/16"	16179	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.054 @ 6' 9 5/16"	0.233	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.079 @ 6' 7"	0.292	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	72	45	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 12' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' 3" o/c unless detailed otherwise.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	5.50"	3.75"	1.50"	391	486	877	1 3/4" Rim Board
2 - Stud wall - HF	5.50"	5.50"	3.27"	391	1925	2316	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PSF)	0 to 12' 5"	12"	63.0	-	Garage
2 - Uniform (PSF)	0 to 10' 7 1/2"	12"	-	40.0	Garage - Live load
3 - Point (lb)	10' 7 1/2"	N/A	-	1986	Vehicle

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Overall Length: 3' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3686 @ 1 1/2"	10313 (3.00")	Passed (36%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2385 @ 1' 1/2"	5922	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	4087 @ 1' 9"	6032	Passed (68%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.010 @ 1' 9"	0.065	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.013 @ 1' 9"	0.081	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 3' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 6" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

	Bearing			Load	s to Suppor		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	1346	2340	3686	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	1346	2340	3686	None

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	13.2		
1 - Uniform (PSF)	0 to 3' 6"	12'	63.0	40.0	Garage
2 - Point (lb)	1' 9"	N/A	-	3000	Vehicle

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

	Forte Software Operator	Job Notes
	Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence
12		-

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 37 of 39

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	5868 @ 4"	7796 (5.50")	Passed (75%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	
Shear (lbs)	2284 @ 1' 9 1/2"	11573	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)]
Moment (Ft-lbs)	5974 @ 2' 8 1/2"	28178	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)]
Live Load Defl. (in)	0.019 @ 2' 8 1/2"	0.095	Passed (L/999+)		1.0 D + 1.0 L (All Spans)]
Total Load Defl. (in)	0.027 @ 2' 8 1/2"	0.119	Passed (L/999+)		1.0 D + 1.0 L (All Spans)]

ystem : Floor

Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Top Edge Bracing (Lu): Top compression edge must be braced at 5' 5" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5' 5" o/c unless detailed otherwise.

		Bearing								
Supports	Total	Available	Required	Dead	Floor Live	Snow	Wind	Seismic	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	4.14"	1594	2222	108	2236	4812/-4812	10972/- 4812	Blocking
2 - Stud wall - HF	5.50"	5.50"	4.14"	1594	2222	108	-2236	4812/-4812	8736/-7048	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Wind (1.60)	Seismic (1.60)	Comments
0 - Self Weight (PLF)	0 to 5' 5"	N/A	17.5					
1 - Uniform (PSF)	0 to 5' 5" (Top)	8"	18.0	-	30.0	-	-	Upper roof
2 - Uniform (PSF)	0 to 5' 5" (Top)	5'	11.0	-	-	-	-	Wall
3 - Uniform (PSF)	0 to 5' 5" (Top)	8"	18.0	-	30.0	-	-	Lower roof
4 - Uniform (PSF)	0 to 5' 5" (Top)	10'	9.0	-	-	-	-	Wall
5 - Uniform (PSF)	0 to 5' 5" (Top)	8"	36.0	40.0	-	-	-	Floor
6 - Uniform (PSF)	0 to 5' 5" (Top)	6'	63.0	40.0	-	-	-	Garage
7 - Point (lb)	2' 8 1/2" (Top)	N/A	-	3000	-	-	-	Vehicle
8 - Point (lb)	11 1/2" (Top)	N/A	-	-	-	3445	7413	Overturning
9 - Point (lb)	4' 1/2" (Top)	N/A	-	-	-	-3445	-7413	Overturning

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

All locations are measured from the outside face of left support (or left cantilever end).All dimensions are horizontal.; Drawing is Conceptual

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	13828 @ 8' 2 1/4"	15947 (7.50")	Passed (87%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	8369 @ 9' 8"	14210	Passed (59%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	-30891 @ 8' 2 1/4"	40743	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.171 @ 12'	0.200	Passed (2L/536)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.370 @ 12'	0.200	Failed (2L/248)		1.0 D + 0.75 L + 0.75 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/480).

• Overhang deflection criteria: LL (0.2") and TL (0.2").

• Top Edge Bracing (Lu): Top compression edge must be braced at 12' o/c unless detailed otherwise.

Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' o/c unless detailed otherwise.

		Bearing			Loads to S			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - HF	3.00"	3.00"	1.50"	-1893	166/-1572	-936	166/-4401	Blocking
2 - Stud wall - HF	7.50"	7.50"	6.50"	7685	5222	2969	15876	Blocking
Blocking Panels are assumed to carry i	no loads an	plied directly al	ove them and th	e full load is	applied to th	e member be	eina desianed.	

Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 12'	N/A	23.0			
1 - Uniform (PSF)	0 to 12' (Top)	3' 6"	11.0	-	-	Wall
2 - Uniform (PSF)	0 to 12' (Top)	8"	40.0	60.0	-	Terrace
3 - Point (lb)	11' 10 13/16" (Top)	N/A	4734	3336	2033	Point load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

Forte Software Operator	Job Notes
Qing Hua Huang Quantum Consulting Engineers (206) 957-3918 qhuang@quantumce.com	Lundin Residence

1/9/2019 12:03:21 PM Forte v5.4, Design Engine: V7.1.1.3 Beams and joists.4te

Page 39 of 39

C-55

fł,`cVUŁAcXY`GYHnjb[g

Öãr] æîÂÛ^&cā[}∙Á[¦ÁT^{ à^¦ÁÔæ‡&•	lí Á
Tæ¢ÁQ;c^¦}æþÁÜ^&cãį}●ÁĮ¦ÁT^{{à^¦ÁÖæ¢&•	JĨÁ
Qv& ĭå^ÁÜ@ea⇔ÁÖ^~[¦{æaãį}}Ñ	Ϋ́^∙
Ql&¦^æ•^Ápræajäj,*ÁÖæ);æ&ãĉÁ[¦ÁYā],åÑ	Ϋ́∧∙
Ql& ĭå^ÁYæb]ā),*Ñ	Ϋ́^∙
V¦æ}•ÁŠ[æåÁÓc;}ÁQ;c^¦•^&cā}*ÁY[[åÁYæ∦Ñ	Ϋ́∧∙
Œ!^ækŠ[æåÅT^∙@kÇa}âŒD	FII
T^¦*^Á⁄[^¦æ) &^Á@) D	₽ÊG
ÚËÖ^ cæÁ05;æf`•ãrÁ/[^¦æ;}&^	I€È€Ã
Ql& ĭå^ÁÚËÖ^ œeÁ[¦Á∕æ‡ ●Ñ	Ϋ́∧∙
OE(t{ aeaã&aet ^ÁQc\¦aec^ÁÙcã-}^••Át[¦Á⁄aet •Ñ	Ϋ́^∙
Tæ¢ÅQ^¦æaãį}∙Å{¦ÅYæ∜ÅŰã~}^∙∙	Н
Ö¦æçãĉÁ0B&&^ ^¦æaãį}ÀĢaB•^&âGD	HOĖG
Yæ ÁT^∙@ÂÜã^ÁÇ3jD	G
Òā*^}•[ĭdā;}ÁÔ[}ç^¦*^}&^Á/[HĂQFEĎËD	1
X^¦cãbæļÁDī¢ã	Ϋ́
Õ[[àæ‡ÁT^{{ à^¦ÁU¦ã^}cææā[}ÅÚ æ}^	ÝZ
Úcæða Áu[ç^¦	Ü]æ•^AŒ&&^ ^¦æ•^å
Ö^}æ{ a&ÁÜ[ç^¦	018&^ ^¦æe^åÂÜ[ç^¦
P[cÁÜ[^åÁÛc^^ ÁÔ[å^	OEDÙÔÁFI c@ÇH΀ËF€DMÁCEÙÖ
CEábĕ•cÁĴcã-}^••Ñ	Ÿ^∙Ç@\¦æãç^D
ÜQÜOBÖ[}}^&&aã[}ÅÖ[å^	OEDÜŐAFIc@ÇHÍ€EF€DMÁCEÜŐ

uab volag	I'' Gui i and 'D
ÜQÜOBÖ[}}^&&caj[}ÅÖ[å^	OEDÜŐÁFIc@ÇHÍ€ÉEF€DMÁCEÜŐ
Ô[å ÁØ[¦{ ^åÂÙ¢^^ ÂÔ[å^	OEDUQUF€€ËFÎKAQEUÔ
Y [[å ÁÔ[å^	Cey őápölléfi kádelő
Y[[åÁ/^{]^¦æcč¦^	ŁÁF€€Ø
Ô[}&\^&\Æ)[å^	OBÔQÍA-FÌËFI
Tæ•[}¦^ÂÔ[å^	VT ÚÁL€GĒFĨ KADĒJÖ
OĘ~{ā}~{ ÅÔ[å^	OEDEÁCEÓT FEFÍ KÁCELJŐÁEZŐ " († 143) *
	OEDÙÔÁFIc@HÍ€ËF€DKAŒÙÖ

Þ`{ à^¦Áį,~ÂÛ@?æAÜ^*ãį}∙	1
Ü^*á[}ÁÛ]æ&a]*Á0,&¦^{ ^}œ4a]D	1
Óãæ¢ãæ†ÁÔ[`{}ÁT^c@{å	Ó¢æ\$oÁQ;c^*¦æaãį}
Úæl{^ÁÓ^œÁZæssq[¦ÁQÜÔŒD	ÊÍ
Ô[}&\^&\&\d^••Á)d^••ÁÔ [&\	Ü^&cæ)** æ
₩•^ÁÔ¦æ&\^åÂÛ^&cãį}•Ñ	Ϋ́∧∙
W•^ÁÔ¦æ&∖^åÁÙ^&cąį}•ÁĴ æàŇ	Ϋ́^∙
ÓænåÁØlæ{ā]*ÁYæl}ãj*•Ñ	Þ[
W}`∙^åÅØ[¦&^ÅYæ}}āj*•Ñ	Ϋ́^•
Tā)Á∓ÁÓæ÷ÁŐãæ€ ÉÁÚ]æ&ã;*Ñ	Þ[
Ô[}&\^&\AÜ^àæ\ÂÜ^c	ÜÒӌܴÙÒV´ŒÙVTŒÊFÍ
Tậ) ÁÃ ÁÛ ơ^^ Á[¦ ÁÔ[˘{}	F
Tæ¢ÁÄÁÚ¢^/Á{¦ÁŐ[ǐ{}	1

Ü©ÜQEEHÖÁX^¦•ąī}ÁrîÈeEEÁXXXXXXXX KAEEBƏEBƏCaq4&ĭ |aæqã}•aÕ¦aqe,acêaÙd^^|ÁQE;}a]*´Õ¦^aæA[[{ È HåáÁ

Úæ*^ÁF

fţ`cVUŁAcXY`GYHŋb[gž7cbl]bi YX

Or at another AU gate A gu	
Usaa AUzer Ar Aa (gen	Y^•
Ocay	ÆG
ÔơZ	È€G
VÄYÁÇ∮^&D	Þ[🕉 🖓 🖒 ¦^å
VÁZÁĢ^&D	Þ[ơĂÔ} & ¦^å
ÜÂÝ	Н
ÜÁZ	H
ÔơÔ¢]ĚÝ	ĒÍ
ÔcÝÒ¢] ĚZ	ĒÍ
ÙÔF	F
ÙÔÙ	F
ÙF	F
VŠÁQ^&D	Í
Üã∖ÁÔæ	CÁ, ¦ÁQQ
Ö¦ão⁄Ôæ	U@
U{ ÁZ	F
U{ Ä	F
ÔåÁZ	
ÔåÁÝ	1
Ü@ÁZ	F
Ü@Ä	F
-	

<chiFc``YX`GhYY`DfcdYfljYg

	Šæè^∣	ÒÆX•ãã	ÕÃڏ∙ãa	Þ	V@~¦{ ÁQEFÒÈ	ÈÖ^}∙ãcŽĐdÈ	È.Ϋã∿∣åŽ∙ãã	Ü^	ØŽ∙ãa	Üc
F	ŒJG	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	ĺ€	FÈ	ÎÍ	FÈ
G	OHÎ ÁÕ¦ÌHÎ	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	ΗÎ	FĚ	ÎÌ	FÈG
Н	OÉÏGÃÕ¦Ě€	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	Í€	FÈ	ÎÍ	FÈF
1	ŒÉ€ÆÕ¦ÈÓÆÜÞÖ	GJ€€€	FFFÍ I	ÈH	ĒÍ	ĚĠ	IG	FÈ	ÎÌ	FÈH
Í	OÉ €€ÃÕ¦ÈÓÁÜ^&c	GJ€€€	FFFÍ I	ÈH	ĒÍ	ĚĠ	l Î	FÈ	ÎÌ	FÈH
Î	CIÉ HÝÕ¦ ÈÓ	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	HÍ	FÊ	΀	FÈG
Ï	OEF€ÌÍ	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	Í€	FÈ	ÎÍ	FÈH

KccX`AUhYf]U`DfcdYfh]Yg

	Šæè^	V ^]^	Öæææàæe ^	Ù]^&æ∙	Õ¦æå^	Ô{	Ò{ [å	Þ	V@∾¦{ ₿	₩Ö^}•ŽÐ⊞
F	ŠÙŠ	ÙÔŠ	V¦ĭ∙R[ãrc	FEĚÍÒÁ/ãį à∧¦Ùclaa}åÁBÈÈ	}æ		F	È	È	Ì€HÍ
G	ÙÚ	Ù[ãåÁÙæÈÈ	Xãĭæ∥î∧Õ¦æå^å	Ù[čc@ol¦}ÁÚð},^	Þ[ÈF		Η	ÈH	È	Ì€HÍ
Н	PØ	Ù[ãåÁÛæ⊞	Xãrĭæ∥îAÕ¦æå∧å	P^{ Ë26a	Þ[ÈF		н	È	ÈH	Ì€HÍ
	ÙÚØ	Ù[ãåÁÙæÈÈ	Xãĭæ∥î∧Ő¦æå^å	Ù] ¦ × & ËÚĄ ^Ëa	Þ[ÈF		F	ÈH	ÈH	Ì€HÍ
Í	GIØËFÈÈÒ∕ÄÖØÁÓa‡æa≱&^å	Õľ æ	ÞÖÙÁVæà∣^ÁÍŒ	g øfft ó' öø' óœš	}æ		F	ÈH	ÈH	Ì€HÍ
Î	GIØËFÈÌÒÁÖØÁW}àæ‡æ}&∧å	Õľ æ	ÞÖÙÁ∕æà∣^ÁíŒ	G ØËFÈÌÒ´ÖØ′WÞÓŒŠ	}æ		F	ÈH	ÈH	Ì€HÍ
Ï	GIØËFTÈÒÁÙÚÁÓa‡æ≱&^å	Õľæ	ÞÖÙÁ∕æà∣^ÁíŒ	gi Øətət Óʻ ùú' óqes	}æ		F	ÈH	ÈH	Ì€HÍ
Ì	GIØËFÈÌÒÁÙÚÁN}àæ‡æ}&^å	Õľæ	ÞÖÙÁ∕æà∣^ÁíŒ	G ØËFÈÒ´ÙÚ´₩ÞÓŒŠ	}æ		F	ÈH	ÈH	ÌH€Ð

Ü©ÜQEEHÖÁX^¦•ą[}ÁrîÈeEE Á¥¥¥¥¥ZTKAEEBEÖæ4&ĭ|æaqã}•aÕ¦æçãĉaÙd^^|ÁQĘ}ĝ*´Õ¦^æaA[[{ È HåáÁ

Úæ*^ÁG

Úæ*^Áн

<chFc``YX`GhYY`GYWJcb`GYhg

	Šæà^	Ù@a}_^	V^]^	Ö^∙ā*}ÁŠãa:c	Tæe^¦ãæ¢	Ö^• ∄} ÁÜ⁻ ^•	052Å Gá	Q^Ã2)lá	Q:ÁŽájlá	RÁŽajlá
F	Ô[˘{}	PÙÙÍ ¢Í ¢Ì	Ô[゙{}	V°à^	CÉI€€ÃÕ¦ÈÓÁÈÈ	V^]ã&æ	ΪÈÌ	Ð,	Ĝ	ΠĒ
G	V^¦¦æ&^ÁÔ[゙{}	PÙÙÍ ¢Í ¢Ì	Ô[゙{ }	V°à^	CÉI€€ÃÕ¦ÈÓÁÈÈ	V^]ã&æ	ΪÈÌ	Ð,	Ĝ	ΪII
Н	Ó^æ	PÙÙFG¢Î ¢Ì	Ó^æŧ	V°à^	CÉI€€ÃÕ¦ÈÓÁÈÈ	V^]ã&æ¢	FÍÈH	JFÈ	ĞΕ	GÄ
1	CĘ}ął*	ÔFG¢G€Ë	Ó^æ	Ô@ea)}^	ŒHÎÁÕ¦ÈHÎ	V^] 38æ	ÎÈEÌ	HÈÎ	FGJ	ÈĤJ
Í	CĘ}}ãj*ÁŰ^¦ãį^ơ^¦	ÔF€¢FÍ ÈH	Ó^æŧ	Ô@ea)}^	ŒHÎÁÕ¦ÈHÎ	V^] 38æ	IÈÌ	Ê	ÎÏÈH	ÈG€J

KccX`GYWFjcb`GYhg

Šæè^∣ Ù@a≱^	√]^	Ö^∙ðt}ÁŠãa:c	Tæe^∖lãæ¢	Ö^∙ã}ÁÜč ^•	OEÁŽAjGá	Q^ÁŽAjlá	Q:ÁŽAjlá	RÃãjlá
F Y [[åÁÓ^æŧ HĚÍÝFIØÙ	Ó^æ	FĔÍÍÒÁVãį à∧¦ÙdÈÈÉ	ŠÙŠ	V^] 38aa	IJ	̀ȀGF	Ì€€ÉHH	FÎÌĚÌ

>c]bh7ccfX]bUhYg'UbX'HYadYfUhifYg

	Šææ^	ÝÆcá	ΫÆά	ZÄZ-cá	V^{] <i>Ã</i> 20á	Ö^cæ&@421[{ ÁÖãæ]⊞É
F	ÞF	€	€	€	€	
G	ÞG	€	FÍ Ě	€	€	
Н	ÞH	€	€	ËĞË	€	
1	ÞI	€	FÍ Ě	ËĞË	€	
Í	ÞÍ	€	€	ËÌË	€	
Î	þÎ	€	FÍ Ě	ËÌË	€	
Ï	ÞÏ	€	€	ËJË	€	
ì	ÞÌ	€	FÍ Ě	ËJË	€	
J	ÞJ	€	€	ËFÈG	€	
F€	ÞF€	€	FÍ Ě	ËFÈG	€	
FF	ÞFF	Î	FÍ Ě	€	€	
FG	ÞFG	Î	FÍ Ě	Ë	€	
FH	ÞFH	Î	FÍ Ě	Ë	€	
FI	ÞFI	Î	FÍ Ě	ËĞË	€	
FÍ	ÞŔ	Î	FÍ Ě	ËĤË	€	
FÎ	ÞĤ	Î	FÍ Ě	ËJË	€	
FΪ	ÞÄ	Î	FÍ Ě	ËFÈG	€	
FÌ	ÞŔ	€	FÍ Ě	Ë	€	
FJ	ÞFJ	€	FÍ Ě	ËÌ	€	
G€	Þ€	€	FÍË	€	€	
GF	ÞŒ	€	FÍË	ËĞË	€	
GG	ÞG	€	FÍË	ËĤË	€	
GH	ÞGH	€	FÍË	ËJË	€	
G	ÞG	€	FÍË	ËFÈG	€	

A Ya VYf Df]a Ufm8 Uhu

	Šæè^	OÁR[ậ]c	RÁR[ã}c	SÁR[ậ]c	Ü[œæ¢Çå^*D) Ù^&ca[}Ðù@æ}^	V^]^	Ö^∙ðt}ÁŠãarc	Tæe^¦ãæ¢	Ö^•∄}ÁÜ [™] ^•
F	TF	ÞF	ÞŒ			V^¦¦æ&∧ÁÔ[゙{}	Ô[゙{}	V°à^	ŒÍ€€ÃÕ¦ÈÓÈ	ÈV^]ã&æ∳
G	ΤG	ÞH	ÞŒ			V^\¦a&^ÁÔ[゙{}	Ô[゙{}	V°à^	ŒÍ€€ÃÕ¦ÈÓÈ	ÈV^]ã&æ‡
Н	ТН	ÞÍ	ÞŒ			Ô[˘{}	Ô[゙{}	V°à^	ŒÍ€€ÃÕ¦ÈÓÈ	ÈV^]ã&æ∳
	TI	ÞÏ	ÞGH			Ô[゙{ }	Ô[゙{}	V°à^	ŒÍ€€ÃÕ¦ÈĎÈ	ÈV^]ã&æ‡
Í	ΤÍ	ÞJ	ÞG			Ô[゙{ }	Ô[゙{}	V°à^	ŒÍ€€ÃÕ¦ÈÓÈ	ÈV^]ã&æ‡
Î	ΤÎ	ÞG	ÞI			Ó^æ	Ó^æ	V°à^	OÉ €€ÃÕ¦ÈÒÈ	ÈV^]ã&æ∳
Ï	ТΪ	ÞI	ÞÎ			Y[[åÁÓ^æ{	Ó^æ	FĔÍÍÒÁVãĮà∧¦ÙI	ΪË ŠÙŠ	V^] ã&æ
ì	ТÌ	ÞÎ	ÞÌ			Y[[åÁÓ^æ{	Ó^æ	FĔĹÍÒÁ∕ãĮà∧¦ÙI	₩ ŠÙŠ	V^] ã&æ ‡

A Ya VYf Df]a Ufm8 UHU fl7 cbh]bi YXŁ

	Šæè∕∣	ØÂR[ậ]c	RÁR[ã}c	SÁR[ậ]c	Ü[cæe^¢Çå^*DÙ^&cā[}Đù@æ}^	V^]^	Ö^∙āt}ÁŠãarc	Tæe∿¦ãæ¢	Ö^∙ã}ÁÜ [~] ^•
J	ТJ	ÞÌ	ÞF€		Y[[åÁÓ^æ	Ó^æ	FĔÍÍÒÁVãĮà∧¦ÙÈ	ÈŠÙŠ	V^] 38æ
F€	T F€	ÞG	ÞFF		CĘ,}ą̃,*ÁŰ∧¦ąĩ,∧È	ËÓ^æ	Ô@e)}^	O⊞ĤÁÕ¦ÈĤ	V^] 38æ
FF	T FF	ÞI	ÞFI		CĘ,}ąĩ*ÁŰ^¦ąĩ,^È	ËÓ^æ	Ô@ea)}^	O⊞ĤÁÕ¦ÈĤ	V^] 38æ
FG	T FG	ÞÎ	ÞŔ		CĘ,}ą̃,*ÁŰ∧¦ąĩ,∧È	ËÓ^æ	Ô@ea}}^	O⊞ĤÁÕ¦ÈĤ	V^] 38æ
FH	T FH	ÞÌ	ÞĤ		CĘ,}ąĩ,*ÁŰ∧¦ąĩ,∧B	ËÓ^æ	Ô@e)}^	O⊞ĤÁÕ¦ÈHÎ	V^] 38æ
FI	T FI	ÞF€	ÞFÏ		CĘ,}ą̃,*ÁŰ∧¦ąĩ,∧È	ËÓ^æ	Ô@ea}}^	0⊞Ĥ ÁÕ¦ÈHÎ	V^] 38æ
FÍ	T FÍ	ÞFF	ÞFG		CĘ,}ąĩ*ÁŰ^¦ąĩ,^È	ËÓ^æ	Ô@e)}^	O⊞ĤÁÕ¦ÈĤ	V^] 38æ
FÎ	T FÎ	ÞFG	ÞFH		CĘ,}ą̃,*ÁŰ∧¦ąĩ,∧È	ËÓ^æ	Ô@e)}^	O⊞ĤÁÕ¦ÈĤ	V^] 38æ
FΪ	ΤFΪ	ÞFH	ÞFI		CĘ,}ąĩ,*ÁŰ∧¦ąĩ,∧È	ËÓ^æ{	Ô@e)}^	O⊞ĤÁÕ¦ÈHÎ	V^] 38æ
FÌ	T FÌ	ÞFI	ÞFÍ		CĘ,}ãj,*ÁÚ∧¦ãį,∧È	ËÓ^æ	Ô@e)}^	O⊞Ĥ ÁÕ¦ÈHÎ	V^] 38æ
FJ	T FJ	ÞŔ	ÞĤ		CĘ,}ãj,*ÁŰ∧¦ãį,∧È	ËÓ^æ	Ô@e)}^	O⊞Ĥ ÁÕ¦ÈHÎ	V^] 38æ
G€	TG€	ÞĤ	ÞFÏ		CĘ,}ą̃,*ÁŰ∧¦ąĩ,∧È	ËÓ^æ	Ô@;}}^	ŒĤÍÃÕ¦ÈĤÎ	V^] 38æ
GF	TGF	ÞŔ	ÞFG		CĘ,}ąĩ*ÁŰ^¦ąĩ,^È	ËÓ^æ	Ô@e)}^	O⊞ĤÁÕ¦ÈĤ	V^] 38æ
GG	TGG	ÞFJ	ÞFH		CĘ,}ãj,*ÁÚ∧¦ãi,∧È	ËÓ^æ{	Ô@eeea}}^	ŒĤÍÃÕ¦ÈĤÎ	V^] 38aa

>c]bhi6 cibXUfmi7 cbX]hjcbg

	R[ð] oÁŠæà∧∣	ÝÃŽĐājá	ΫÁΣťBឿμá	ZÃŽ.Đ3já	ÝÁÜ[dĚŽËeÐæåá	ŸÁÜ[dĚŽËdEbæåá	ZÁÜ[deŽČËe®Dæåá
F	ÞF	Ü^æ\$kaji }	Ü^æ\$ka‡i}	Ü^æ\$kaji }	Ü^æ\$ka‡i}	Ü^æ\$cā[}	Ü^æ\$cā[}
G	ÞH	Ü^æ\$kaį́}	Ü^æ\$ka‡i}	Ü^æ\$ka‡i}	Ü^æ\$ka‡i}	Ü^æ\$cā[}	Ü^æ\$kā[}
Н	ÞÍ	Ü^æ\$kaįį }	Ü^æ\$ka‡ }	Ü^æ\$kaįį }	Ü^æ\$ka‡i}	Ü^æ\$cāį}	Ü^æ\$cā[}
	ÞÏ	Ü^æ\$kaį́}	Ü^æ\$ka‡i}	Ü^æ\$kaį́}	Ü^æ\$ka‡i}	Ü^æ\$cā[}	Ü^æ\$cā[}
Í	ÞJ	Ü^æ\$kaįį }	Ü^æ\$ka‡ }	Ü^æ\$kaįį }	Ü^æ\$ka‡i}	Ü^æ\$cā[}	Ü^æ\$cā[}
Î	ÞG						
Ï	Þİ						
Ì	ÞÎ						
J	ÞÌ						
F€	ÞF€						
FF	ÞŒ	Ü^æ\$kaįį }	Ü^æ\$ka‡ }	Ü^æ\$kaįį }	Ü^æ\$ka‡i}	Ü^æ\$cā[}	Ü^æ\$cā[}
FG	ÞŒ	Ü^æ\$kaji }	Ü^æ\$ka‡i}	Ü^æ\$kaji }	Ü^æ\$ka‡i}	Ü^æ\$cā]}	Ü^æ\$cā[}
FH	₽G9	Ü^æ\$kaį́}	Ü^æ\$ka‡ }	Ü^æ\$ka‡ }	Ü^æ\$ka‡i }	Ü^æ\$cā[}	Ü^æ\$cā[}
FI	Юd	Ü^æ\$kaį́}	Ü^æ\$ka‡i }	Ü^æ\$kaįį }	Ü^æ\$ka‡i}	Ü^æ\$cā[}	Ü^æ\$cā[}
FÍ	ÞG	Ü^æ\$ka‡i}	Ü^æ\$cā[}	Ü^æ\$cā[}	Ü^æ\$cāį}	Ü^æ\$dāį}	Ü^æ\$kā́[}

A Ya VYf 8]ghf] Vi hYX @ UXg f6 @ %. 8 YUX ^ cUXŁ

	T^{à^¦ÁŠæèà^∣	Öãi^&ca∦i}	ÙcæloÁTæt*}ãčå^ŽĐe⊞	EÒ}åÁTæt}ãčå^ŽtĐo£2ÈÈ	È Ùcælo ÁŠ[&ænañ]}ŽedÉÄá	Ò}åÆŠ[&æa6ā[}ŽdÊÄá
F	ΤÎ	Ϋ́	ÉE	ÊŦ€Ì	€	€
G	ТЇ	Ϋ́	ËGHI	ËGHÏ	€	€
Н	ΤÌ	Ϋ́	ËGHÏ	ËGHÏ	€	€
1	TJ	Ϋ́	ËСНÏ	ËGHÏ	€	€

A Ya VYf 8]ghf]Vi hYX @ UXg f6 @ " . Gbck ``cUXŁ

	T^{à^¦AŠæèà^∣	Öãi^&caįį́}	Ùcæ¦oÁTæt*}ãĉå^ŽĐe∰	ÈÒ}åÁTæt}ãčå^ŽiĐo£2ÈÈ	È Ùcælo/ç[&ænañ]}ŽedÉÄá	Ò}åÆŠ[&æa£ã[}ŽdÉÃá
F	ΤÎ	Ϋ́	Ê	Ê	€	€
G	ТЇ	Ϋ́	ËĤUÍ	ËĤUÍ	€	€
Н	ΤÌ	Ϋ́	ËĤUÍ	ËĤUÍ	€	€
	TJ	Ϋ́	Ë₩UÍ	ËĤUÍ	€	€

Ü©ÜQEEHÖÁX^¦•ą[}ÁrÎÈEÈE ÁÁÁÁÁÁZT KaEEBÉAÉÉÉŐæ¢&`|ææqã]•aŐ¦æçãcêaÙ&^/ÁQĘ}}aj*´Ő¦^ææÁ[[{ÈEHåáÁ

Úæ*^Á

A Ya VYf 8]ghf]Vi hYX @ UXg f6 @ (`. K]bX c UXŁ

	T^{à^¦AŠæaà^∣	Öã^&cãį}	ÙcæloÁTæt}ãčå^ŽĐa∰	EÒ}åÁTæt}ãčå^ŽiĐo£2ÈÈ	ÈÙcæloÁŠ[&ænañ]}ŽeÉÃá	Ò}åÆĞ[&ææã[}ŽdÉÃá
F	TG	Ý	ËGH	ËЭН	€	€
G	TH	Ý	Ë	ËLÏ	€	€
Н	TI	Ý	ËLÏ	ËLÏ	€	€
1	ΤÍ	Ý	ËЭН	ËЭН	€	€

A Ya VYf 8]ghf]Vi hYX @ UXg f6 @) . 6 @ %Hf Ubg]Ybh 5 f YU @ UXgŁ

	T^{à^¦AŠæaà^∣	Öã^&cãį}	Ùcæ¦oÁTæt*}ãčå^ŽĐa∰	ĖÒ}åÁTætੋ}ãčå^ŽiĐo£2ÈÈ	ÈÙcæloÁŠ[&ænañ]}ŽeÉÃá	Ò}åÆŠ[&æasã[}ŽdÉÃá
F	TF€	Ϋ́	Ë€GG	Ë€GG	€	Î
G	TGF	Ϋ́	Ë€GG	Ë€GG	IÈIF^ËÎ	Î
Н	TGF	Ϋ́	Ë€GG	Ë€GG	€	Î
	TGG	Ϋ́	Ë€GG	Ë€GG	IÈIF^ËÎ	Î
Í	T FF	Ϋ́	ËÊ€GH	Ë€GH	FÈHG^ËTÍ	Î
Î	TGG	Ϋ́	ËÈ€GH	ËÉ€GH	€	Î
Ï	T FF	Ϋ́	Ë€GJ	Ë€GJ	GÈÈÌÏ∧ËFÍ	Î
Ì	T FG	Ϋ́	iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Ê€ÉÎ	€	Î
J	T FH	Ϋ́	Ë€GÏ	Ë€GÏ	ĨĔĬſſŶĔĤ	Î
F€	T FH	Ϋ́	ËEGJ	Ë€GJ	ÎËÎF^ËÎ	Î
FF	T FI	Ϋ́	Ë€GJ	Ë€GJ	ÌÈÌG^ËFÎ	Î

A Ya VYf 8]glf]Vi hYX @ UXg f6 @ * . 6 @ & Hf Ubg]Ybh 5 f YU @ UXgŁ

	T^{à^¦ÁŠæà^∣	Öãi^&ca‡i}	ÙcækoÁTæt}ããå^ŽĐe∰∰	ÈÒ}åÁTæt}ãčå^ŽiÐo6Ê20ÈÈ	È Ùcælo ÁŠ[&ænañ]}ŽeÉÃá	Ò}åÅŠ[&æa£ā[}ŽdÉÃá
F	TF€	Ϋ́	Ë€J	Ë€J	€	Î
G	TGF	Ϋ́	Ë€J	Ë€J	IÈIF^ËÎ	Î
Н	TGF	Ϋ́	ËEJ	Ë€J	€	Î
1	TGG	Ϋ́	Ë€J	Ë€J	IÈIF^ËÎ	Î
Í	T FF	Ϋ́	Ë€JF	Ë€JF	FÈHHG^ËFÍ	Î
Î	TGG	Ϋ́	Ë€JF	Ë€JF	€	Î
Ï	T FF	Ϋ́	ËĒ₽FÎ	ËËFÎ	GÈÌÏ^ËÍ	Î
Ì	T FG	Ϋ́	ÊÊGGÍ	ÊÊGGÍ	€	Î
J	T FH	Ϋ́	ËĒ€J	ËĒ∓€J	ÏĖĖÏG^ĖEĨ	Î
F€	T FH	Ϋ́	Ë₩FÊ	ËÊFÎ	ÎËÎF^ËÎ	Î
FF	T FI	Ϋ́	ËÊFÎ	ËÊFÎ	ÌÈÌG^ËFÎ	Î

A Ya VYf 5 f YU @cUXg 16 @7 %. 8 YUX ^ cUXŁ

	RĮãjOÁCE	RĮãjoÁÓ	RĮãjoÁÔ	RĮã; cÁÖ	Öãi^&cãji}	Öãidãã`cãį}	Tæt*}ããå^Ž∙-á
F	ÞG	ÞFÌ	ÞFG	ÞFF	Ϋ́	OĦÓ	Ë€€Í
G	ÞFÌ	ÞFJ	ÞFH	ÞFG	Ϋ́	OĦĆ	Ë€€Í
Н	ÞFJ	ÞI	ÞFI	ÞFH	Ϋ́	OĦÓ	Ë€€Í
1	ÞI	ÞÎ	ÞFÍ	ÞFI	Ϋ́	OĦÓ	Ê€€Í
Í	ÞÎ	ÞÌ	ÞFÎ	ÞFÍ	Ϋ́	OĦÓ	Ë€€Í
Î	ÞÌ	ÞF€	ÞFÏ	ÞFÎ	Ϋ́	OĦÓ	Ë€€Í

A Ya VYf 5 f YU @cUXg f6 @7 &. @j Y``cUXŁ

	R[ā] OÁCE	R[ā]oÁÓ	R[ā]oÁÔ	R[ậ]oÁÖ	Öã^&cã[}	Öãrd ãaĭ cāį}	Tæ*}ãĉå^Ž∙-á
F	ÞG	ÞĤ	ÞFG	ÞFF	Ϋ́	OĦĆ	Ë€G
G	ÞFÌ	ÞFJ	ÞFH	ÞFG	Ϋ́	OĦÓ	Ë€G
Н	ÞFJ	ÞI	ÞFI	ÞFH	Ϋ́	O∰Ó	Ë€G
1	ÞI	ÞÎ	ÞFÍ	ÞFI	Ϋ́	O⊞Ó	Ë€G
Í	ÞÎ	ÞÌ	ÞĤ	ÞFÍ	Ϋ́	O∰Ó	Ë€G

ÜQÜCEEHÖÁX^!•ã]}ÁFÎÈEÈE ÁÁÁÁÁÄZT KAÈÈÈÀÈÈÂCaq4&`|aæã]}•aÕ¦aqeãĉaÙ&^^|ÁQE;}ð]*´Õ¦^aæA[[{ È HåáÁ Úæ*^Á

Ra≱ÁIÉAGEFJ GHHÍÁÚT Ô@&&∧åÁÓ^KÁÙa≱å¦[

A Ya VYf 5 f YU @ UXg f6 @ '&'. '@j Y `` c UXŁ f7 c bljbi YXŁ

	RĮã; OÁCE	R[ā]oÁÓ	R[ã] cÁÔ	R[ã] cÁÖ	Öãi^&cąį́}	Öãrd ãač cãį}	Tæt*}ãĉå^Žt∙-á
Î	ÞÌ	ÞF€	ÞFÏ	ÞFÎ	Ϋ́	O⊞Ó	Ë€G

6Ug]W@UX`7UgYg

	ÓŠÔÁÖ^∙&¦ājαāj}	Ôæe^*[¦^	ÝÁÕ¦æçãô	ŸÁÕ¦æçãcî	ZÁŐ¦æçãcî	RĮą̃c	Ú[ậ]c	Öãadãaĭ ơ∿å	0≣^æÇT^ÈÈ	Ùĭ¦æe&∧QÚ⊞
F	Ö^æåÁ{æå	ÖŠ		Ë					Î	
G	Šãç^Á{aå	ŠŠ							Î	
Н	Ù}[,Â{[æå	ÙŠ								
	YājåÁ[æå	ΥŠ								
Í	ÓŠÔÆÁ/¦æ}•ã} oÆ^æ⊞	Þ[}^						FF		
î	ÓŠÔÁGÁ/¦aà•ãà} oÁŒ^aè	Ы}^						FF		

@UX'7caV]bUhjcbg

	Ö^∙&¦a];ca[}Ù[È	ĔÖĦ	ÈÜ₩ĐŠÔ	Øæ&d	₩ŐŠÔ	Øæ&dÌ	₩ĎŠÔ	Øæ&dÈ	₩ĎŠÔ	Øæⅆ	ŤĎŠÔ	Øæ&dÌ	₩ĎŠÔ	Øæⅆ	₩ĎŠÔ	Øæ&dË	₽ĎŠÔ	Øæ&dÌ	₩ĎŠÔ	Øæ&dÊ	ĐŠÔ	Øæ&dill
F	Ö^-∤^&cąį́}ÁF Ÿ^∙	Ϋ́	ÖŠ	F																		
G	Ö^-∤^&c‡[}ÁGŸ^∙	Ϋ́	ŠŠ	F																		
Н	Ö^-∤^&cąį́}ÁHŸ^∙	Ϋ́	ÖŠ	F	ŠŠ	F																
	ÓÓ ÁFÎËË Ÿ^∙	Ϋ́	ÖŠ	F																		
Í	ÓÓ ÁFÎËJ Ÿ^∙	Ϋ́	ÖŠ	F	ŠŠ	F	ŠŠÙ	F														
Î	ÓÓÁFÎ ËF€ÈËŸ^•	Ϋ́	ÖŠ	F	ÜŠŠ	F																
Ï	ÓÓÁFÎ ËF€ÈËŸ^•	Ϋ́	ÖŠ	F	ÙŠ	F	ÙŠÞ	F														
Ì	ÓCÓÁFÎ ËFFÈÈŸ^∙	Ϋ́	ÖŠ	F	ŠŠ	ËÍ	ŠŠÙ	Ĕĺ	ÜŠŠ	Ëĺ												
J	ÓCÓÁFÎ ËFFÈÈŸ^∙	Ÿ	ÖŠ	F	ŠŠ	ËÍ	ŠŠÙ	Ĕĺ	ÙŠ	Ëĺ	ÙŠÞ	ËÍ										
F€	ÓÓÁFÎ ËFGÈÈŸ^∙	Ÿ	ÖŠ	F	ΥŠ	Ê																
FF	ÓÓÁFÎ ËFGÈÈŸ^∙	Ÿ	ÖŠ	F	ΥŠ	Ê																
FG	QÓÔÁFÎ ËFHËËŸ^•	Ϋ́	ÖŠ	F	ΥŠ	Èĺ	ŠŠ	Ĕĺ	ŠŠÙ	Ëĺ	ÜŠŠ	ËÍ										
FH	QÓÔÁFÎ ËFHEEŸ^•	Ϋ́	ÖŠ	F	ΥŠ	⊞í	ŠŠ	ËÍ	ŠŠÙ	ËÍ	ÜŠŠ	Ēĺ										
FI	QÓÔÁFÎ ËFHÈËŸ^•	Ϋ́	ÖŠ	F	ΥŠ	ÈÍ	ŠŠ	Ĕĺ	ŠŠÙ	Ëĺ	ÙŠ	ËÍ	ÙŠÞ	Ĕĺ								
FÍ	QÓÔÁFÎ ËFHÈËŸ^•	Ÿ	ÖŠ	F	ΥŠ	⊞í	ŠŠ	Ĕĺ	ŠŠÙ	Ëĺ	ÙŠ	ËÍ	ÙŠÞ	Ĕĺ								
FÎ	QÓÔÁFÎ ËFHËËŸ^•	Ÿ	ÖŠ	F	ΥŠ	ÈÍ	ŠŠ	ËÍ	ŠŠÙ	Ëĺ												
FÏ	QÓÔÁFÎ ËFHËËŸ^•	Ÿ	ÖŠ	F	ΥŠ	₿ĺ	ŠŠ	Ĕĺ	ŠŠÙ	ËÍ												
FÌ	ÓCÓÁFĨËFÍÈÈŸ^∙	Ϋ́	ÖŠ	Ê	ΥŠ	Ê																
FJ	ÓCÓÁFÎËFÍ ÈÉÉŸ^∙	Ϋ́	ÖŠ	Ê	ΥŠ	Ë																

A Ya VYf 5=G7 % h fl * \$!%\$Ł 5 G8 GhYY 7 c XY7 \ YWg

	ŠÔ	T^{ à^¦	Ù@a≱^	WÔÁTæ¢	Š[&Žcá	Ù@a∉ÁWÔ	ŠĮ &Žcá	Öã	Ú}&⊒0{ ÁŽ	≾áÚ}dÐ[{ÁŽtá	T}^^Ð{{	ⅲ∰::-p{ⅲ Ôà Òĭ}
F	F	TF	PÙÙÍ ¢Í ¢Ì	ÈE€Ì	FÍÈḦ́H	Ì€€I	FÍĚHÎ	^	F€ÍÈĞÎÌ	GFÏÈEÉÍI	HEÈEÏ	HeÈeï FÉÈIH∣PFËFà
G	F	ΤG	PÙÙÍ ¢Í ¢Ì	ÈG€	FÍÈḦ́H	Ì€€Í	FÍĚHÎ	^	F€ÍÈĞÎÌ	GFÏÈEÍI	HEEE	HeÈEË FËÈIH∣PFËFà
Н	F	ΤН	PÙÙÍ ¢Í ¢Ì	ÈÏÌ	FÍÈḦ́H	Ì€€H	FÍĚHÎ	^	F€ÍÈĞÎÌ	GFÏÈEÍI	HEEE	HeÈEË FËÈIH∣PFËFà
1	F	TI	PÙÙÍ ¢Í ¢Ì	ÈËII	FÍÈḦ́H	È€€H	FÍĚHÎ	^	F€ÍÈĞÎÌ	GFÏÈEÍI	HEEE	HEÈEË FËLH PFËFà
Í	F	ТÍ	PÙÙÍ ¢Í ¢Ì	ÈEIÎ	FÍÈḦ́H	È€€G	FÍĚHÎ	^	F€ÍÈĞÎÌ	GFÏÈEÍI	HEÈEÏ	H€ÈEÏ FÉÈIH∣PFËFà
Î	F	ΤÎ	PÙÙFG¢Î ¢Ì	ÈIJ	FHĚÍ	È	€	^	FGJÈÏ、	J I GFÈ HÏ	Ì€ËJÌ	FHFËÍÎ FÈH PFËà
Ï	F	T F€	ÔF€¢FÍ ÈH	Ì€HÌ	€	È€F€	€	`	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÍH GÈEFJ PFËFà
ì	F	TFF	ÔF€¢FÍ ÈH	ÈEÏÍ	€	ÈEFÌ	€	^	ÍÎÈHÏ	JÎĚÏÍ	HÈHFJ	ĠĚÎH FÐÌGPFËFà
J	F	T FG	ÔF€¢FÍ ÈH	È€ÌF	€	È€FJ	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	ĠĔÎH FÐÏÏ PFË
F€	F	T FH	ÔF€¢FÍ ÈH	ÈÈÌF	€	È€FJ	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	ĠĔÎH FÐÏJ PFËa
FF	F	T FI	ÔF€¢FÍ ÈH	È€IÏ	€	È€FF	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÍH GÈE€Í PFËFà
FG	F	T FÍ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚ	Ì€€Ï	J	^	GUÈGÍ G	₿ JÎĚ̈́ÏÍ	HÈHFJ	GOĐĚGI FÈEHÎ PFËETà

ÜQÜQEEHÖÁX^¦•ā[}ÁrÎÈEÈ ÁÁÁÁÁZT KAEHÉAÉHÉÔæ}&* |æaā[}•aÕ;|æçãĉaÙơ^^|ÁÇĘ}ā]*´Õ;|^æxÁ[[{ È HåáÁ Úæ*^Â

A Ya VYf 5=G7 % h, fl * \$!%\$L 5 G8 GhYY 7 c XY 7 \ YW_g ff c bljbi YXL

ŠÔ	T^{ à^¦	Ù@#}^	WÔÁT æg	ŠĮ &Žcá	Ù@æĺÁVÔ	ŠĮ &Žcá	Öã	Ú}&-Ð{ÃŽ:	áÚ}dÐ[{ÁŽtá	T}^^Ð{{Ė	<u>₩</u> }::Ð[₩ËÔà Ò˘}
FH F	<u> </u>	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚ	È€€H	J	^	GJÈGÍG	JÎĚÏÍ	HÈFFJ	GOELGI FÈEHÎ PFËETà
FI F	<u> </u>	ÔF€¢FÍ ÈH	È€€Ï	IĚÍ	Ì€€Í	€	^	GËFH	JÎĔÏÍ	HÈFJ	GGÉHÎ FÉEHÎ PFÉETà
FÍ F	T FÌ	ÔF€¢FÍ ÈH	È€FI	ĺÈ	È€€Ï	FFË	^	FÏĒ€J	JÎĔÏÍ	HÈFJ	<u>FÌ</u> <u>FË</u> HÎ <u>PFË</u> à
FÎ F	T FJ	ÖF€¢Fİ ⊞	È€FG	İĖİ	É€H	€	^	FJÉIH	JĨĔĨÍ	HÉHFJ	FJÉUÍ FÉHÍ PFÉFA
FÏ F	TG€	ÖF€¢FÍ ÉI	Ĩ€FI	ÍĒ	Ē€Ē	FFË	^	FÏË€J	JÎËÎİ	HÉHFJ	FÎ FÊHÎ PFÊFÀ
FÌ F	TGF	ÖF€¢Fİ ⊞	Ē€ÎÏ	€	E€FÏ	€	^	ΠĒΗΪ	JĨËĨÍ	HÉHFJ	GIĒĪH FÐIJ PFĒà
FJ F	TGG	OF€¢FI ⊞	<u>E</u> [€	E€FÍ	€	^	ПЕН	JĨĒIJ	HEHFJ	GIEIH FEII PFEà
G€ G	TF	PŲŲļ¢ļ¢Į	_ <u></u> €I I	FI EH H	E€€	FIEH	^	F€E	GFI ŒI I	HEE	HEEE FEIHPFEFà
GF G	TG	PUUݢݢİ	EG€H	FI EH H	E€€	FIEH	<u>^</u>	F€IEGI	GFI E€I I	HEEE	HEEE FEETH PFEFà
GGG	TH	PUUI¢I¢I	<u>EH</u>	FIHH	E€E	FIHH	^	F€ EG I	GFIL€II	HELE	
GH G		PUUI¢I¢I	EG	FIHH H	L€€I	FIHH		F€IEII	G+IL€II	HELE	
GG			LEIG	H H H	<u>le</u> €H	нын	^		GFILEII		
GG			HEEL I			€	^	FGJELIJ	IGHE HI	IEEJI	
GG		OF€¢FI⊞	<u>te</u> ll	€		€	^				
GG		OF€¢FI ⊞		E	JEI E	E	^				
GG		OF€¢FI ⊞	È G	€	<u>È</u> H	E	^		JEII		
		OF€¢FI ⊞	<u>È</u>	E		E	^				
				E	n <u>r</u> ego nregi	E	^				
			ÈÉÉÉ	E	IEEI	E	^				
			ÈÉÉÉ	E		E	^		JIEII		
			ÈÉÉÉ	E E	i i i i i i i i i i i i i i i i i i i	E	^		JIEII		
HI G	TEL		REEE	E	REEF	E			JI EI I JÎ Ê Î Î		FIEI F PEEA
HÎ G	TGE		REEE	€ €	REE I	E	•	FÏĤ€I	JÎ Ê Î Î		
HÎ G		ÔF€¢FÍ ÈH		E	 R€HÍ	E	^	ÍÌÈHÍÏ	IÎ Ê Î Î		
HÌ G				€ €	HE HÍ	E	^		JÎËÎ		
	 		i i	с гінін	REFG	БÍЙЦ	^	FEIÈ	CEÏÈEÍI		
I€ H	TG		È	FÍÈHIH	REFI	FÍŘHÍ	^	FEIĤÌÌ	GEÏÈEÍI	HERE	
IF H	тн		IFFI	FÍ ĤI H	i⊊i i	FÍŘHÍ	^	FEIFAI	GFIÈE	HEFE	HEFEI FFIH PFFE
IG H	TI		IF-€G	FIHH	Ì€€	FÍŘHÍ	^	FEIFAI	GFÏÈ€ÍI	HEFE	HEFEI FFIH PFFE
тн н	τí		<u>₩</u> FFÌ	FÍ ĤI H	Ì€€	FÍŘHÍ	^	FEIFAIL	GFÏ È€Í I	HEFE	HEFE FFIH PFFA
II H	ΤÎ		Ř	FHŤÍ	ÌÈ	€	^	FGIÈ	IGFÉH	Ì∉ËÌ	
IÍ H	TF€	ÔF€¢EÍ ÌH	<u>ie</u> ií	€	Ì€GÏ	€	^	ÍÎĤÍÏ	JÎĤÏÍ	HÊHEL	GÌŤÎH GÊÌÌ PEËà
IÎ H	TFF	ÔF€¢FÍ Ĥ	Ì€€Î	€		€	^	ÍÌÈHÍ	JÎĤÏÍ	HÊFEJ	GIŤÍH GŦÍ PFŦà
IÏ H	TFG	ÔF€¢FÍ ÌH	ŔGH	€	؀ΠH	€	^	ÍÌÈHÍÏ	JÎĤÏÍ	HÈEJ	GÌŤÎH GÊÎL PEÊÂ
IÌ H	TFH	ÔF€¢FÍ ÌH	ŔGH	€	Ř€ÎH	€	^	ÍÌÈHÍÏ	JÎĤÏÍ	HIÈFEJ	GIŤIH GŦII PFŦa
IJ H	TFI	ÔF€¢FÍ ÈH	ÈG€	€	È€H	€	^	ÍÌÈHÏ	JÎĚÏÍ	HÈFJ	GÌĚÎH GÊÌÏ PFËà
Í€H	TFÍ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚ	Ì€FÍ	J	^	GJÈG G	JÎĚÏÍ	HÈFJ	GGĚG FĚH PFËà
ÍF H	TFÎ	ÔF€¢FÍ ÈH	È€€Ï	İĚ	È€€	J	^	GIÈGG	JÎĚÏÍ	HÈFJ	GGĚG FÈH PFÉA
ÍG H	ΤFΪ	ÔF€¢FÍ ÈH	Ì€€Ï	IĚÍ	È€€J	€	^	ĠĒFH	JÎĚÏÍ	HÈFJ	GGÉHÎ FÉEHÎ PFÉETà
ÍH H	T FÌ	ÔF€¢FÍ ÈH	Ì€FI	ÍÈ	È€FH	FFË	^	FÏĒ€J	JÎĚÏÍ	HÈHFJ	FÌ FÈH PFËà
ÍI H	T FJ	ÔF€¢FÍ ÈH	È€FG	ÍÈÍ	Ì€€I	€	^	FJÈI H	JÎĚÏÍ	HÈHFJ	FJĖIJÌ FĖĖH PFĖĖa
ÍÍ H	TG€	ÔF€¢FÍ ÈH	Ì€FI	ÍÈ	È€FH	FFË	^	FÏĒ€J	JÎĚÏÍ	HÈHFJ	FÌ FÈH PFËà
ÍÎ H	TGF	ÔF€¢FÍ ÈH	ÈÌ€	€	È€ÍF	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈFFJ	GÌĚÍH GÈEJ PFËEà
ÍΪΗ	TGG	ÔF€¢FÍ ÈH	ÊÌF	€	È€ÍF	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈFFJ	GÌĚÍH GÈEJ PFËEà
$\overline{\Omega}$ 1	TF	PÙÙÍ ¢Í ¢Ì	ÈE€Ì	FÍÈHÏH	Ì€€I	FÍĽĚHÎ	^	F€ÍÈGÎÌ	GFÏÈ€ÍI	HEÈEÏ	H€ÈËËËIH∣PFËËà
ÍJI	ΤG	PÙÙÍ ¢Í ¢Ì	ÈEG€	FÍÈḦ́H	Ì€€Í	FÍĚHÎ	^	F€ÍÈGÎÌ	GFÏÈEÍI	H€È€Ï	HEÈËËË FËË I H PFËFÀ
΀ I	TH	PÙÙÍ ¢Í ¢Ì	ÈËÏÌ	FÍ ÈHÏ H	Ì€€H	FÍĚHÎ	^	F€ÍÈĞÎÌ	GFÏÈEÍI	HEÈEÏ	H€ÈEË FËÈIH∣PFËFà
ÎFI	TI	P ÙÙÍ ¢Í ¢Ì	È€ÏI	FÍÈHÏ H	Ì€€H	FÍĚHÎ	^	F€ÍÈGÎÌ	GFÏÈEÍI	HEÈEÏ	H€ÈEË FËÈIH∣PFËFà
ÎGI	ΤÍ	PÙÙÍ ¢Í ¢Ì	È€IÎ	FÍ ÈH H	È€€G	FÍĚHÎ	^	F€ÍÈCÎÌ	GFÏÈEÍI	HEE	HEEË FËIH PFËrà
ÎHI	ΤÎ	PÙÙFG¢Î ¢Ì	ÈIJ	FHĚÍ	È	€	^	FGJÈÏJ	IGFÈHÏ	ļ€ <u>i</u>]j	FHFËÍÎ FÈH PFËà
ÎI I	TF€	ÖF€¢FÍ ÈH	ÉEHÌ	€	ÆF€	€	^	ΪĖ́́́ΗΪ	JĨÉÏÍ	HÉHFJ	GIĒĪH GĒĒFJPFĒFà
ÜŴŒËŀĊ	ÓÁX^¦∙ãi}Ák	ÎÈEÈ XXXXXŽT	Kalilalila Ôa	ekči æeði	}∙aÕ¦æçâ	îĉaÙc^∧∣	ÁCĘ,	}ā;*´Õ¦/	^æøÁ[[{{[IHåáÁ	Úæ*^Â

A Ya VYf 5=G7 % h, fl * \$!%\$Ł 5 G8 GhYY 7 cXY7 \ YW g ff cbljbi YXŁ

ŠÔ	T^{ à^¦	Ù@a∳^	WÔÁTæ¢	ŠĮ &Žcá	Ù@æĺÁŴÔ	ŠĮ &Žcá	Öã	Ú}&-D[{ÁŘ(á	iÚ}dÐ[{ÁŽá	T}^^Ð{{È	<u>₩</u> }::Ð[(<u>₩</u> ÊÔà) Ò [~] }
ÎÍI	TFF	ÔF€¢FÍ ÈH	ÈEÏÍ	€	È€FÌ	€	^	ÍÌÈHÍÏ	JÎĔÏÍ	HÈHFJ	<u>ĠĔÎH FÐÌGPFËa</u>
ÎÎII	TFG	ÔF€¢FÍ ÈH	Ē€ÌF	€	È€FJ	€	^	ÍÌÈHÍ	JÎĔÏÍ	HÈHFJ	GÌḖÎH FÐÏÏ PFĒFà
ÎÎII	T FH	ÖF€¢Fİ ÉH	Ē€İF	€	Ē€FJ	€	^	<u>II Ħ I</u>	JÏËÏİ	HÈHFJ	GIĒĪH FÐĪJ PFĒrà
ÎÌI	<u>T FI</u>	ÖF€¢FÍ ÉH	Ē€IÏ	€	ÊEFF	€	^	IĨ⊞ĨĨ	JĨËÏİ	HÈHFJ	GİĒÎHGĒ€€ÍPFĒFà
ÎJ I	<u> </u>	OF€¢FI ⊞	E€€	ΙĒ	Æ€	J	^	GIEG G	JĨĒIJ	HEHFJ	GOELGI FEEH PFEEà
I€ I	<u>T FI</u>	OF€¢FI ⊞	Æ€I	IE	Æ€H	J	^	GÌ∰ C	JIEII	HEHFJ	GGELGI FEEH PFEEà
IFI	<u> </u>	OF€¢FI EI	E€€I	IEI	E€€I	€	<u>^</u>	GEFH	JIEII	HEHFJ	GGEH FEEH PFEFà
IGI	TFI	OF€¢FI ⊞	<u>H€</u> FI	<u> </u> <u>H</u>	E€€	FFH	^	FIEEJ	JIHII		
IH I		OF€¢FI⊞	LEFG	I E I	<u>le</u> €H	€ FFF	•	FJEIH	JIHII		
	<u> </u>	<u>OF€¢FI⊞</u>	<u>H</u> EFI r≿î ï		<u>le</u> €l	FFE	^	FILE€J			
		OF€¢FIEI		€		E	^				
				EíÈLIU		EÍĽLÍ	^	LIELI EXIDI	JI⊑II ⊖⊐≣È⊂ÍI	<u>nerrj</u>	
							^	FEIDEI	GEIDEII		
	<u>тн</u>		ILIOO IÈJEI	FÍ ÉHÍ H		FILI	^	FEIRIÌ	GEILEII	Hata	HERE FEIHDEFES
Ì€ Í	T1		IEGF IFG€G	FÍ ÉHÍ H	i£€	FÍŘHÍ	^	FEIFAI	GEIREÍI	HEFE	HERE FEIHPEES
ÌFÍ	ΤÍ			FÍ ÉHÍ H	 Ì€€I	FÍŘHÍ	^	FEIFAI	OFTELT OFTĒÆÍI	HERE	HERE FEIHPEES
ÌGÍ	ΤÎ		ін Тран	FHŘÍ	<u>ite</u> uï	€	^	FGIÈ	IGFÉH	Ì€ŤIJÌ	
ÌHÍ	TF€	ÔF€¢FÍ ÌH		€	Ì€GÏ	€	^	ÎÎĤÎ	JÎĤÏÍ	HEHEJ	GÌHÌH GÈÌÌ PFËà
ÌIÍ	TFF	ÔF€¢FÍ Ĥ	Ì€€Î	€		€	^	ÍÌÈHÍ	JÎŘÏÍ	HÊHEJ	GIÊÎH GÊÎÎ PEÊ
ìì	TFG	ÔF€¢FÍ ÈH	ÈGH	€	ÈÊĤ	€	^	ÍÌÈHÏ	JÎĔÏÍ	HÈHFJ	GÌĒÌH GĒÌI PFĒ
ìîí	TFH	ÔF€¢FÍ ÈH	ÈGH	€	Ē€Î H	€	^	ÍÎÈHÍÏ	JÎĔÏÍ	HÈHFJ	GÌĚÎH GÈÈÌÌ PFÉFà
ÌÏÍ	TFI	ÔF€¢FÍ ÈH	ÈG€	€	È€H	€	^	ÍÌÈHÍ	JÎĔÏÍ	HÈHFJ	GÌĚÎH GÈÈÌÏ PFÉFà
ÌÌÍ	T FÍ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚ	È€FÍ	J	^	GIÈGÍG	JÎĚĬÍ	HÈHFJ	GGĒIGI FĒFHÎ PFĒFà
ÌJÍ	T FÎ	ÔF€¢FÍ ÈH	Ì€€Ï	١Ě	È€€I	J	^	GIÈGÍG	JÎĚĬÍ	HÈHFJ	GGĒIGI FĒFHÎ PFĒFà
J€Í	ΤFΪ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚÍ	È€€J	€	^	ĠĒFH	JÎĚ̈́ÏÍ	HÈHFJ	GGÈHÎ FÈEHÎ PFËETà
JF Í	T FÌ	ÔF€¢FÍ ÈH	È€FI	ÍÈ	È€FH	FFË	^	FÏḖ€J	JÎĚÏÍ	HÈHFJ	FÌ FÈHÎ PFËFà
JGÍ	T FJ	ÔF€¢FÍ ÈH	È€FG	ÍÈÍ	È€€I	€	^	FJÈIH	JÎĔÏÍ	HÈHFJ	FJĖUÌ FĖFI PFËFA
JH Í	TG€	ÖF€¢FÍ ÉH	É€FI	ÍĒ	ÉEFH	FFË	^	FÏË€J	JĨËÏİ	HÈHFJ	FÎ FÊHÎ PFÊFÂ
JĮĮ	TGF	OF€¢FI ⊞	EI€	€	<u>E</u> F	€	^	<u> </u>	JĨĒIJ	HEHFJ	GIEÎĤ GEEJ PFEEà
JII	TGG	OF€¢FI ⊞	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	€	E€IF	€	<u>^</u>	⊞ 	JIEII	HEHFJ	GIEIH GEJ PFEFà
JII	TF	PUUI¢I¢I	EE€I	FI EH H	E€€	FIEH	Î.	F€IEGI	GFI EEI I	HEE	HEEE FEIHPFEFà
JĮĮ		PUUI¢I¢I	EG€	HHH	<u>t</u> €€I	FIHH	•	F€ EG I	GHEEL	HELE	
JII	<u> </u>				<u>it</u> te€H		^			HEE	
JJI					IEEH IEEC		^				
	<u> </u>			ri Eri N			^		GEIEEII	i aŭ li	
			IJ ià≃⊔ì	FFEI		E	^	FGJETJ ÍîÈLÍÏ	IGFE FII		
FEH Î	TFF	ÔF€¢FÍ ÈH		€		€	^				
F∉I Î	TEG	ÔF€¢FÍ Ĥ	HE F	€		€	^	ÍÎĤÍÏ	JÎĤÏÍ	HÊHEL	GHÎH FÈIÏ PFËà
F€ÍÎ	TFH	ÔF€¢FÍ Ĥ	RE F	€		€	^	ÍÌÈHÏ	JÎĤÏÍ	HÊHEL	GÌH FÈI PEEà
F€ÎÎ	TFI	ÔF€¢FÍ Ĥ		€	Ř€FF	€	^	ÍÌÈHÏ	JÎĤÏÍ	HÊHEJ	GÌHÌH GÌ€€Í PFËFà
F€ÏÎ	TFÍ	ÔF€¢FÍ ÌH	Ì€€Ï	IŘ	Ì€€Ï	J	^	GIRAG	JÎĤÏÍ	HÊHEJ	GOTI GI FIFH PFIFA
F€ÌÎ	ΤFÎ	ÔF€¢FÍ ÈH	Ì€€Ï	IĚ	È€€H	J	^	GIÈGÍG	JÎĔÏÍ	HÈHFJ	GOĐĚGI FÈEHÎ PFËETà
F€J Î	ΤFΪ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚΊ	Ì€€Í	€	^	GÊFH	JÎĚÏÍ	HÈHFJ	GGÉĤ FÉEHÎ PFËFà
FF€ Î	T FÌ	ÔF€¢FÍ ÈH	È€FI	ÍÈ	Ì€€Ï	FFĚ	^	FÏḖ€J	JÎĚ̈́ÏÍ	HÈHFJ	FÌ FÈHÎ PFËFà
FFF Î	T FJ	ÔF€¢FÍ ÈH	È€FG	ÍÈÍ	È€€H	€	^	FJÈI H	JÎĔĬĬ	HÈHFJ	FJÈÐÚ FÈEHÍ PFËEA
FFG Î	TG€	ÔF€¢FÍ ÈH	Ì€FI	ÍÈ	Ì€€Î	FFË	^	FÏĒ€J	JÎĚÏÍ	HÈHFJ	FÌ FÈH PFËà
FFH Î	TGF	ÔF€¢FÍ ÈH	ÌÊ	€	Ì€FÎ	€	^	ÍÌÈHÍÏ	JÎĔÏÍ	HÈHFJ	GÌĚ́IH FÐÌJ PFËFà
FFI Î	TGG	ÔF€¢FÍ ÈI	Ē€ÎÏ	€	È€FÎ	€	^	ÎÊ H ÍÏ	JÎĔĬĬ	HÈHFJ	GIĚÎH FÐÌÌ PFËà
FFÍÏ	TF	PŲŲ ¢Į ¢Ì	Ē€Ì	FİĖH	È€€	FİĘ́HÎ	^	F€İÈĞÎÌ	GFÏÈEÍI	HEE	HEEË FËLH PFËrà
FFÍÍ	TG	PUUI ¢İ ¢Ì	₽₽FJ	FI EH H	€€	FIÉHÎ	^	F€IEGIÌ	GFIÈEÍI	HEE	HEEEIHPEËTà
ÜÒUOEH	ÓÁX^¦∙ãi}Ár	ÎÈ€È /////2T		el& læði	}•aÕ¦æaâ	ćaÙ¢^l	ÁCE	}ā*´Õ¦⁄	\æeÁ[[{ È	IHåáÁ	Úæ*^Å

A Ya VYf 5=G7 % h, fl * \$!%\$Ł 5 G8 GhYY 7 cXY7 \ YW g ff cbljbi YXŁ

ŠÔ	T^{ à^¦	.Ù@a≱^	WÔÁT æ¢	ŠĮ &Žcá	Ù@æÁŴÔ	ŠĮ &Žcá	Öã	Ú}& ÁŽ áÚ} dÐ { ÁŽ á	<u>ăT}^^₽{</u> [È	₩ <u>}::Ð{₩ÊÔà Ò`}</u>
<u>FF</u>	TH	PUU¢ļ¢ļ	<u>E</u> [FI EH H	Æ€H	FIEH	<u>^</u>	F€JEGIUGFIEEJU	HEE	HEEE FEIHPFEFà
FFI I	<u> </u>	PUUI¢I¢I	<u></u> €I	FI EH H	€€H	FIEH	^	F€IEGI GFIEEI	HEE	HEEE FEIHPFEFà
FFJ I	<u></u>	PUUI¢I¢I	E I	FIEHH	€€G	FIEH	<u>^</u>	F€IEGIIGFIEEII	HEE	HEEE FEIHPFEFà
FŒ	TI	PUUFG¢I¢I	EG (FHEI	_€I J	€	^	FGJEIJIGFEH	I€⊞JI	FHFEII FEH PFEà
FGF	TF€	<u>O</u> F€¢FI ⊞	E€H	€	ÆF€	€	<u>^</u>	<u> ÎÎĤÎ JÎÊÎÎ</u>	HEHFJ	<u>G</u> , <u>E</u> , <u>I</u> H GE€FJ PFEFà
FGG I	TFF	OF€¢FI ⊞	E [€	€FI	€	^	<u>ÎÎĤÎ ÎÎÎÎ</u>	HEFIFJ	<u>GEIHFÐIGPFE</u> à
FGH	TFG	OF€¢FI ⊞	<u>E</u> F	€	€FJ	€	<u>^</u>		HEFIFJ	GEIH FUI PFEà
FGI	TFH	OF€¢FI ⊞	EEIF	€	€FJ	€	^		HEFIFJ	GEIH FEIJ PFEA
FGI	<u> </u>	OF€¢FI ⊞	EE	€	<u>€</u> FF	€	<u>^</u>		HEFIFJ	GIEIH GEE€I PFEFà
FGI	<u> </u>	OF€¢FI ⊞	E€€I	IE	€€	J	Ŷ	<u> Chéri C</u> ni fi i i	HEFIFJ	GOELGI FEEH PFEEA
FGI	<u>T FI</u>	OF€¢FI ⊞	E€€I	IE	E€€H	J	<u>^</u>	CHEO C JIEII	HEFIFJ	GGEIGI FEEHI PFEETà
FGI	<u> </u>	OF€¢FI ⊞	E€€I	IEI	€€	_€	<u>^</u>	<u>GEFH JEII</u>	HEHFJ	GOTH FEFH PFEFà
FGJ	TFI	OF€¢FI ⊞	E€FI	I HE	l€€l	FFH	^	FIEI€J JIEII	HEHFJ	
FH€ I	TFJ	OF€¢FI ⊞	E€FG	IEI	E€EH	€	^	FJEIH JIEII	HEFJ	
FHF I	TG€	OF€¢FI ⊞	E €FI	IE	E€	FFE	<u>^</u>	<u>FIE€J JIEII</u>	HEFFJ	FI FEH PFEà
FHG I	TGF	OF€¢FI ⊞		€	<u>€</u> FI	€	<u>^</u>		HEFFJ	GEIH FEIJ PFEA
FHH	TGG	OF€¢FI ⊞	E I	€	<u>€</u> FI	€	<u> </u>		HEHFJ	GEIH FEII PFEA
FH	TF	PUUI¢I¢I	EGIF	FI EH H	€F€	FIEH	^	F€IEGI GFIEEI	HEE	HEEE FEIHPFEFà
FH	TG	PUUI¢I¢I	EGIF	FIEHH	<u>€</u> FF	FIEH	<u>^</u>	F€IEGIGFIEEII	HEE	HEEE FEIHPFEFà
FH	TH	PUUI¢I¢I	El€	FI EH H	€€	FIEH	^	F€IEGI GFIEEI	HEE	HEEE FEIHPFEFà
FH	<u></u>	PUUI¢I¢I	EEI€	FIEHH	€€	FIEH	<u>^</u>	F€IEGI GFIEEI	HEE	HEEE FEIHPFEFà
FH I	<u></u>	PUUI ¢I ¢I	E€€	FI EH H	Æ€I	FIEH	<u>^</u>	F€IEGIIGFIEEII	HEE	HEEE FEIHPFEFà
FHU	<u></u>	PUUFG¢I¢I	E€	FHEI	E I	€	<u>^</u>	FGJEIJIGFEH	I€EII	FHFEII FEH PFEà
FI€	TF€	OF€¢FI ⊞	EE F	€	€GH	€	^		HEFIFJ	GEIH GEII PFEFà
FIF	TFF	OF€¢FI ⊞	<u>EI H</u>	€		€	<u>^</u>		HEFIFJ	GIEIH GETHPFEFà
FIGI	TFG	OF€¢FI ⊞	<u>EII</u>	€	<u>€</u> G	€	^		HEHFJ	GIEIH GEIJ PFEFà
FIH I	<u>TFH</u>	OF€¢FI ⊞	<u>EII</u>	€	<u>t</u> €l G	€	^		HEHFJ	GIEIH GEIHPFE
		<u>OF€¢FI⊞</u>	<u></u> H€G	€	<u>l</u> €G	€	•			
		OF€¢FI⊞	I S €	1 Ħ 1 Ħ		J	^			
		OF€¢FI ⊞	IE€I IE€Ï	ιœ		J F	^			
				íÈ	IEEC		^			
			IEF C	ÍÈÍ		f	^			
FÍ€ Ì	TGE		REFI	іщ і́ф			^			
FF			ЩЕГ НЕГС	f ∎ €		 €	^			
FIGI	TGG	ÔF€¢FÍ ÈH	што Efiн	€		E	^			GHÍH GĒÍ PĒËà
FÍH I	 		F AF	БĹĦĤ		FÍŘHÎ	^	Feíkaî) GEÏKEÚ	HERE	HERE FILH PEERS
FÍI I	TG			FÍÈHIH	REFG	FÍŘHÍ	^		HETE	HERE FEIHDERES
FÍÍ	<u>тн</u>		ĒÌ€	Г		FIH	^		HETE	HERE FEIHPEES
FÍÎ J	TI		ĒĨ€	FÍŘIH	Ì€€Ï	FÍŘHÍ	^	FEIFEIL	HEFE	HERE FEIHPEEA
FÍI	ΤÍ		₽F€€	FÍ ĤI H	Ì€€I	FÍŘHÍ	^	Feíkai Grikeíi	HEFE	HERE FEIHPEEA
FÌ	ΤÎ		HÊ LÛ	FHŤÍ	<u>ine</u> lí	€	^		Ì €Ë JÌ	FHFIĚÍ Í FIÈH PFIEà
FÍ.L.J.	TF€	ÔF€¢EÍ ÈH	HÊÌF	€		€	^		HÊHEL	GÌŘÎH GĒÎÎ PEËà
F΀ J	TFF	ÔF€¢FÍ Ĥ	È Н	€	REL Ì	€	^		HÊHEL	GÌĚÎH GĒÎHPFËà
FÎ F J	TEG	ÔF€¢FÍ Ĥ	Ē	€		€	^		HIELE	GIÊÎH GÊÛ PEÊ
FIGJ	TFH	ÔF€¢FÍ Ĥ	ĒÌÏ	€	Ĩ€Í G	€	^		HEHEJ	GIĚÍH GĚÎH PFÆ
FÎH J	TFI	ÔF€¢FÍ Ĥ	ÈE€G	€	Ì€GÌ	€	^		HÈF	GÌẾÎH GÊÊÎÍ PFË
FÎI J	TFÍ	ÔF€¢FÍ ÈH	Ì€€Ï	١Ě	È€FH	J	^	GUÈCÍG JÎĚTÍ	HÈFJ	GOLLIG FIEH PEETà
FÎÍJ	ΤFÎ	ÔF€¢FÍ ÈH	Ì€€Ï	١Ě	Ì€€I	J	^	GUÈCÍG JÎĚTÍ	HÈHFJ	GOLÍGI FÉHÎ PFEFA
FÎÎJ	ΤFΪ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚΊ	È€€Ì	€	^	ĠĒFH JĪĔĪÍ	HÈHFJ	GGÉHÎ FÊEHÎ PFÊEFA
FÎ Ï J	T FÌ	ÔF€¢FÍ ÈH	Ì€FI	ÍÈ	Ì€FG	FFĚ	^	FÏḖ€J JÎĔĬĬ	HÈHFJ	FÌ FÈHÎ PFËFà
FÎÌ J	T FJ	ÔF€¢FÍ ÈH	È€FG	ÍÈÍ	Ì€€I	€	^	FJÈIH JÎĚĬÍ	HÈHFJ	FJÈÐIÌ FÈEHÎ PFËETà
ÜMIMITI)Áγ∧!∙a⊺∖á⊏	ÎÈ≡È ÁWWWŹT		d&` ⊇æ31\	• a 1 ! 20 ?	r∂i∧∧∣	ÁF	}ā,*´Õ!∧aanÁ[[/	ÈHåźÁ	 Γ΄ Ι≃α* ∧ Δί

ÜQÜCEEHÖÁX^!•ã]}ÁFÎÈEÈE ÁÁÁÁÁÄZT KAÈÈÈÀÈÈÂCaq4&`|aæã]}•aÕ¦aqeãĉaÙ&^^|ÁQE;}ð]*´Õ¦^aæA[[{ È HåáÁ

Ô[{]æa
KÛ*æa
C{ÂD[}•~[@a*ÂD]*a
KÛ*a
C
AD[]*a
KÛ*a
C
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a
AD[]*a

A Ya VYf 5=G7 % h, fl * \$!%\$L 5 G8 GhYY 7 c XY 7 \ YW_g ff c bljbi YXL

ŠÔ	T^{ à^¦	Ù@a≱^	WÔÁT æ¢	ŠĮ &Žcá	Ù@;æłÁ\Ô	ŠĮ &Žcá	Öã	Ú}&#Ð{Ãڏa	áÚ}oÐ[{ÁŽtá	T}^^₽{	⊞`}::Ð{⊞ÊÔà Ò˘}
FÏJ J	TG€	ÖF€¢FÍ ÉI	É€FI	ÍĒ	É€FF	FFË	Ŷ	FÏË€J	JĨËĨÍ	HÉHFJ	<u>FÌ</u> <u>FËH</u> PFË
FI€ J	TGF	OF€¢FI ⊞	E∏G	€	E€IG	€	^	<u>IIHI</u>	JÎËII	HEHFJ	GIEÍH GEÍI PFEFà
FIF J	TGG	OF€¢FI EI	<u>E</u> IH	€	E€IG	€	Ŷ	IIEHI	JĨĒIJ	HEFFJ	GIEIH GEII PFEA
FIG F€	TF	PUUݢݢİ	<u>EII</u>	FI 🖽 H	E€€Í	FIEH	^	F€IEGI	GFI ŒI I	HEE	HEEE FEIHPFEFà
FIH F€	TG	PUUݢݢİ	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	Ì₿JI	E€GH	€	Â	F€IE	GFIE€II	HEE	HEEE FEFI PFEFà
FÎI F€	TH	PÙÙ͢͢Ì	ÉHF€	ÌĖ́HF	Él€	€	^	F€İÉĞİİ	GFÏÈEÍI	HEE	HEEË FEFGHPFËFà
FII F€	<u> </u>	PUUݢݢİ	EH€J	IEHF	E€I€	€	Ŷ	F€IEGI	GFIE€II	HEE	HEEE FEEGHPFEEà
FÎÎ F€	TÍ	PÙÙ ¢Í ¢Ì	ĒĨ€	IĒÏI	É€GF	€	^	F€İÉĞİİ	GFÏÈEİI	H€EE	HEEEË FEFT PFEFA
FÎÎ F€	ΤΪ	PÚÚFG¢Ĩ¢İ	ĒIJ	FHEII	Ē€ÏF	€	Ŷ	FGJÉÏJ	IGFÉHÍ	İ€ËJİ	FHFĒÍĪ FĒH PFĒà
FÎÌ F€	TF€	ÖF€¢FÍ ÉI	É€HU	€	ÆF€	€	^	IIEHI	JĨĔĨÍ	HÉHFJ	GİĒÍÏH GĒEFÏ PFĒ∓à
FÏJ F€	TFF	ÖF€¢FÍ ⊞	Ē	€	E FÍ	€	^	IIEHI	JÎËÎİ	HÉHFJ	GIĒĪH FÐĪĪ PFĒA
FÌ€ F€	T FG	ÔF€¢FÍ ÈH	ÉÉÌF	€	È€FJ	€	^	<u> </u>	JÎĔÏÍ	HÈHFJ	<u>GÌËÎH FÐÌHPFË</u> à
FÌF F€	T FH	ÖF€¢FÍ ÉI	Ē€İF	€	È€FJ	€	Ŷ	IIEHI	JÎËÎİ	HÉHFJ	GĒĪH FÐÌ PFĒà
FÌG F€	<u>T FI</u>	ÔF€¢FÍ ÈH	È€IÏ	€	È€FF	€	^	ÍÌÈÍÏ	JÎĔÏÍ	HÈHFJ	ĠĔĨĦ FÐJĨ PFËFà
FÌH F€	<u> </u>	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚ	È€€J	J	^	GJÈGÍG	JÎĔÏÍ	HÈHFJ	GGELGI FEEHÎ PFEEFà
FÌI F€	<u>T FÎ</u>	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚ	Ì€€Í	J	^	GIÈGÍG	JÎĔÏÍ	HÈHFJ	GGELGI FEEHÎ PFEEFà
FÌÍ F€	<u> </u>	ÔF€¢FÍ ÈH	Ì€€Ï	IĚÍ	È€€G	€	^	GÌËFH	JÎĚÏÍ	HÈHFJ	GGÈHÎ FÈEHÎ PFËETà
FÌÎ F€	T FÌ	ÔF€¢FÍ ÈH	È€FI	ÍÈ	Ì€FÍ	€	^	FÏĒ€J	JÎĚÏÍ	HÈHFJ	FÌ FÈHÎ PFËFà
FÌÏ F€	T FJ	ÔF€¢FÍ ÈH	È€FG	ÍÈÍ	Ì€€H	€	^	FJÈIH	JÎĚÏÍ	HÈHFJ	FJÈUÌ FÈFĤ PFËFà
FÌÌ F€	TG€	ÔF€¢FÍ ÈH	È€FI	ÍÈ	È€FÌ	FFË	^	FÏĒ€J	JÎĚÏÍ	HÈHFJ	FÌ FÈHÎ PFËFà
FÌJ F€	TGF	ÔF€¢FÍ ÈH	È€ÎÏ	€	Ì€FÎ	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈHFJ	ĠĚÎH FÈÌJ PFËFà
FJ€ F€	TGG	ÔF€¢FÍ ÈH	ÈÊÎÌ	€	Ì€FÎ	€	`	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	ĠĚÎH FÈÌÌ PFËFà
FJF FF	ΤF	PÙÙÍ ¢Í ¢Ì	Ȁ΀	FÍÈΗ̈́Η	È€€G	FÍĚHÎ	`	F€ÍÈĞÎÌ	GFÏÈEÍI	H€È€Ï	HeBeï FÉIH∣PFËFà
FJG FF	ΤG	PÙÙÍ ¢Í ¢Ì	ÈII	FÍÈḦ́H	È€GÍ	FÍË	^	F€ÍÈĞÎÌ	GFÏÈEÍI	HEEE	HEÈEÏ GÈÈEG PFËFà
FJH FF	TH	PÙÙÍ ¢Í ¢Ì	ÈGHF	ÏÈĒJÎ	È€I€	FÍË	^	F€ÍÈĜÎÌ	GFÏÈEÍI	H€È€Ï	HEÈEÏ FÈEÏÎ PFËETà
FJI FF	TI	PÙÙÍ ¢Í ¢Ì	ÈH	ÏÈĒJÎ	È€I€	FÍË	^	F€ÍÈĜÌÌ	GFÏÈEÍI	H€È€Ï	HEÈEÏ FÈEÏF PFËETà
FJÍ FF	ТÍ	PÙÙÍ ¢Í ¢Ì	ÈGH	ΪÈΉ́Ј	Ì€GF	FÍË	^	F€ÍÈGÎÌ	GFÏÈEÍI	H€È€Ï	HEEË FEFÎÍ PFËFà
FJÎ FF	ΤÎ	PÙÙFG¢Î ¢Ì	ÈIJ	FHĚÍ	È€ÍI	ĠË	^	FGJÈÏJ	IGFÈHÏ	Ì€ËJÌ	FHFĚÍÎ FÈH PFËà
FJÏ FF	TF€	ÔF€¢FÍ ÈH	Ì€HÌ	€	È€F€	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÎH GÈ€GGPFËFà
FJÌ FF	TFF	ÔF€¢FÍ ÈH	È€ÏÍ	€	È€FÌ	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÎH FÐÌÌ PFËFà
FJJ FF	T FG	ÔF€¢FÍ ÈH	È€ÌG	€	È€FJ	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	ĠĚÎH FÈÏ PFËFà
G€€ FF	T FH	ÔF€¢FÍ ÈH	ÈÈÌF	€	È€FJ	€	^	ÍÌÈÍÏ	JÎĚÏÍ	HÈHFJ	ĠĔĨĦ FÐÏI PFËFà
GEF FF	T FI	ÔF€¢FÍ ÈH	È€IÏ	€	È€FF	€	^	ÍÎÈHÍÏ	JÎĚ̈́ÏÍ	HÈHFJ	GÌĚÍH GÈEEFÍ PFËFà
G€G FF	T FÍ	ÔF€¢FÍ ÈH	Ì€€Ï	١Ě	È€€I	J	^	GJÈGÍ G	JÎĚÏÍ	HÈHFJ	GOĐĽGI FÈEHÎ PFËFà
GEH FF	ΤFÎ	ÔF€¢FÍ ÈH	Ì€€Ï	١Ě	È€€I	€	^	GJÈGÍ G	JÎĚÏÍ	HÈHFJ	GOĐĽGI FÈEHÎ PFËFà
Gel FF	ΤFΪ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚÍ	Ì€€Ì	€	^	ĠĒFH	JÎĚÏÍ	HÈHFJ	GGÈHÎ FÈFHÎ PFËFà
G€ÍFF	T FÌ	ÔF€¢FÍ ÈH	Ì€FI	ÍÈ	Ì€GH	FFË	^	FïĒ€J	JÎĚÏÍ	HÈHFJ	FÌ FÈHÎ PFËFà
G€ÎFF	T FJ	ÔF€¢FÍ ÈH	È€FG	ÍÈÍ	Ì€€H	€	^	FJÈI H	JÎĚÏÍ	HÈHFJ	FJÈUÌ FÈFHÎ PFËFà
G€ÏFF	TG€	ÔF€¢FÍ ÈH	Ì€FI	ÍÈ	È€FF	€	^	FÏĒ€J	JÎĚÏÍ	HÈHFJ	FÌ FÈHÎ PFËFà
GEÌFF	TGF	ÔF€¢FÍ ÈH	È€ÎÏ	€	Ì€FÎ	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	ĠĚÎH FÈÌJ PFËFà
G€J FF	ΤGG	ÔF€¢FÍ ÈH	ÈÊÎÌ	€	Ì€FÎ	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	ĠĚÎH FÈÌÌ PFËFà
GF€ FG	TF	PÙÙ ¢Í ¢Ì	ÈĠÏÎ	FÍ ÈH H	È€FF	FÍĚHÎ	^	F€ÍÈĞÎÌ	GFÏÈEÍI	H€È€Ï	HEEEË FËLHPFËFA
GFF FG	ΤG	PÙÙÍ ¢Í ¢Ì	ÈĜÏ	FGÈLGJ	È€GH	€	^	F€ÍÈĜÎÌ	GFÏÈEÍI	H€È€Ï	HEEEË FEÈÌÏ PFËFà
GFG FG	TH	PÙÙÍ ¢Í ¢Ì	ÈH€H	JÈÌÍ	Ì€HÍ	€	^	F€ÍÈĞÎÌ	GFÏÈEÍI	H€È€Ï	HEÈË FÈFJ PFËrà
GFH FG	TI	PÙÙÍ ¢Í ¢Ì	ÈGJÏ	JÈÌÍ	È€H	€	^	F€ÍÈGÎÌ	GFÏÈEÍI	H€È€Ï	HEEË FËFÌ PFËFà
GFI FG	ΤÍ	PÙÙÍ ¢Í ¢Ì	ÈÎÏ	JÈFH	È€FÌ	€	^	F€ÍÈGÎÌ	GFÏÈEÍI	H€È€Ï	HEEË FEGHPFËFà
GFÍ FG	ТÎ	PÙÙFG¢Î ¢Ì	ÌĐ€I	FHĚÍ	Ì€JÏ	€	^	FGJÈÏJ	IGFÈLHÏ	Ì€ËJÌ	FHFËÍÎ FÈH PFËà
GFÎ FG	TF€	ÔF€¢FÍ ÈH	ÈÈÌF	€	Ì€GH	€	^	ÍÌÈHÏ	JÎĚÏÍ	HÈHFJ	GÌĚÍH GÈĒÎÍ PFËFà
GFÏ FG	TFF	ÔF€¢FÍ ÈI	ÈÏI	€	È€IÌ	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÍH GÈEÎ PFËFà
GFÌ FG	T FG	ÔF€¢FÍ ÈI	ÈÌÌ	€	È€ÍG	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌ Ế Î H GẾ Î G P FË à
GFJ FG	TFH	ÔF€¢FÍ ÈH	ÈΪΪ	€	È€ÍG	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÍH GÈĒÍÍ PFËFà
GO€ FG	TFI	ÔF€¢FÍ ÈH	ÈE€G	€	È€GÌ	€	^	ÍÎÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÍH GÈEÎF PFËFà
				101 1 7	ñ.		íor) = + (Õ)		ŤI 18 2Á	11-***
UWUHL	<i>) H</i> K,^^;● Qi} A		namamaUa	terox ∣æea]	}∙a∪iae¢a	uauc\^	ЯŁĘ	.}a≓ U¦∕	`aeen[[{ b	⊥⊓ааА	Uærnhrt

A Ya VYf 5=G7 % h, fl * \$!%\$Ł 5 G8 GhYY 7 cXY7 \ YW g ff cbljbi YXŁ

ŠÔ	T^{ à^¦	Ù@a∳^	WÔÁT æg	ŠĮ &Žcá	Ù@æ¦ÁŴÔ	ŠĮ &Žcá	Öã	Ú}&	áT}^^Ð[{Ė	∰ }::Ð[∰ Ôà Ò`}
CGF FG	T FÍ	ÔF€¢FÍ ÈH	Ì€€Ï	١Ě	Ì€FÍ	J	^	GUÈGÍG JÎĚĬĬÍ	HÈHFJ	GGĚIGI FÈEĤÍ PFË⊟à
GGG FG	T FÎ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚ	Ì€€Î	J	^	GUÈGÍG JÎĚĬĬÍ	HÈHFJ	GGĒĽGI FĒĖHÎ PFË≓à
GGH FG	T FÏ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚĺ	Ì€€Î	€	^	ĠĔFH JÎĔĬÍ	HÈHFJ	GGÈHÎ FÈEHÎ PFËETà
GG FG	T FÌ	ÔF€¢FÍ ÈH	È€FI	ÍÈ	Ì€€Î	€	^	FÏḖ€J JÎĚ́IÍ	HÈHFJ	FÌ FÈHÎ PFËFà
GGÍFG	T FJ	ÔF€¢FÍ ÈH	È€FG	ÍÈÍ	Ì€€I	€	^	FJÈJIH JÎĚĬÍ	HÈHFJ	FJÈUÌ FÈFĤ PFËFà
GG FG	TG€	ÔF€¢FÍ ÈH	È€FI	ÍÈ	È€G€	FFË	^	FÏĖĨ€J JÎĖ́ÍÍ	HÈHFJ	<u>FÌ</u> <u>FÈ</u> HÎPFËà
CG FG	TGF	ÔF€¢FÍ ÈH	ĒΊΗ	€	È€IG	€	^		HÈHFJ	<u>GÌḖÎH GḖÎÎ PFḖ</u>
GG FG	TGG	ÖF€¢Fİ ⊞	ĒİH	€	ÉEIG	€	^		HÉFIFJ	GIĒĪH GĒĪI PFĒFà
GGJ FH	TF	PÙÙ͢͢Ì	É€Í	FİĖ́́H	Ē€	FİËHÏ	^	F€IÉGÏÌGFÏÉEÌI	HEE	HEEEË FËIHPFËFà
GH€ FH	TG	PŲŲ ¢Į ¢Į	EIJ€	FI EH H	E€G	FIE	^	F€JEGIIGFIEEJI	H€E€	HEEE GEIFPFEFà
GHF FH	TH	PŲŲ ¢ļ ¢Į	<u>Ē H</u>	FJ ᡛH H	E€H	FIE	^	F€JEGIIGFIEEJI	HEE	HEEEE FEEII PFEFà
GHG FH	<u></u>	PUUI¢I¢I	EI€	FI EH H	E€H	FIE	^	F€ EG I GFI EE I	HEE	HEEE FE JJ PFEFà
GH FH	<u></u>	PUUI¢I¢I	EE I	FIEHH	<u>E</u> €FI	FIE	<u>^</u>	F€IEGII GFIEEII	HEE	HEEE FEIGPFEFà
GH FH	TI	PUUFG¢I¢I	E€	FHEI	E J	GE	<u>^</u>	FGJEIJIGFEH	I€⊞JI	FHFEII FEH PFEà
GH FH	TF€	OF€¢FI EI	<u>E</u> F	€	E€GH	€	^		HEHFJ	<u>GIEIH GEII PFEFà</u>
GH FH	TFF	OF€¢FI ⊞	<u>EIH</u>	€	<u>H</u> €II	€	<u>^</u>		HEFJ	
GH FH	TFG	OF€¢FI ⊞	E	€	EG	€	^ •		HEFJ	
GH FH	I FH	OF€¢FI⊞	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	€	<u>t</u> €IG	€			HEHFJ	
GHU FH		OF€¢FI⊞	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	€	EEG	€	•			
G€ FH		OF€¢FI⊞	LE€	I E	<u>t</u> €FF	J	-			
GF FH		OF€¢FI⊞	LE€I	l EL	È€EH	€	_			
GGFH		OF€¢FI⊞	ite€l	I E I	<u>t</u> ∉⊦€	€	^			
GHFH		OF€¢FI⊞	HEFI PEFO	l EL	BEGI	FFE	^			
GI FH		OF€¢FI ⊞	HEFG	I ELI Í À	EE€I	E E	^			
GÎ FH		OF€¢FI⊞	HEFI HEFI		H∃€€H	FFE	^			
GI FH		OF€¢FI⊞	<u>⊞IG</u>	€	<u>te</u> l G	€	^			
GI FH				E	È	€ ⊏írŤií	^		HEHFJ	
GI FI					DEFG		^		HEE	
GJ FI				r Gen Gu	integra	E	^	FEIEGII GFIEEII		
GE FI	<u> </u>			JEII		E E	^			
<u>Á</u> CEI	<u>тí</u>		È Î Î			E E	^			
CI LI LI	ΤÎ		HÊC LÌ	FLEŤÍ	i⊑i i	£	^		ÌÆÏIÌ	
GI FI	TF€	ÔF€¢EÍ ÈH	HE F	fit	in €i H€CH	€	^		HÊHEI	CÌ ŤÎ H CĒÎ Í PĒËà
	TFF	ÔF€¢FÍ ÈH	Ē	€	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	€	^		HÊFI	GHÌH GÈÌ PFËà
GÎ FI	TEG	ÔF€¢FÍ ÈH	Ē	€	in Ei G	€	^		HÊHEL	GIÊÎH GÊÎG PEÊà
	TFH	ÔF€¢FÍ ÈH	Ē	€	in Ei G	€	^		HÊHEL	GÌHÌH GÈÎÍ PFËà
GÎFI	TFI	ÔF€¢FÍ ÈH	È€G	€	Ì€GÌ	€	^		HÈEI	GÌŤÎH GÊÎF PEËà
GI FI	TFÍ	ÔF€¢FÍ Ĥ	Ř€€Ï	IŘ			^		HITHE	GOTIG FIFH PFIFA
G΀ FI	TFÎ	ÔF€¢FÍ Ĥ	Ì€€Ï	IŘ	Ì€€Î	J	^		HITHEJ	GOŤ G FĚH PFĚà
G F FI	TFÏ	ÔF€¢FÍ ÌH	Ř€€Ï	IŘÍ	Ì€€Î	€	^	GHFH JIHII	HIÈHEJ	GOTH FIFH PFIFA
G G FI	TFÌ	ÔF€¢FÍ ÌH	Ř€FI	ÍÈ	Ì€€Î	€	^	FÏĤ€J JÎĤĬÍ	HITHEJ	FÌ FIFH PFIFà
GH FI	TEJ	ÔF€¢FÍ ÌH	Ì€FG	ÍĤÍ	Ì€€I	€	^		HÌTHEJ	FJIHII FIFH PFIFA
GI FI	TG€	ÔF€¢FÍ ÌH	Ř€FI	ÍÈ	Ì€G€	FFH	^	FÏĤ€IJĴĤĬÍ	HÌHEJ	FÌ FIFH PFIFà
GÍ FI	TGF	ÔF€¢FÍ ÈH	ÈÍH	€	È€IG	€	^		HÈHFJ	GÌẾÎH GĒÎÎ PFĒA
GÎÎFI	TGG	ÔF€¢FÍ ÈH	ĒΗ	€	È€IG	€	^		HÈHFJ	GÌĚÎH GÈÊÍÍ PFËFà
ĠĨ FÍ	TF	PÙÙÍ ¢Í ¢Ì	È€Í	FÍÈḦ́H	È€€J	FÍĚHÎ	^	F€ÍÈGÎÌGFÏÈEÍI	HEÈEÏ	HEEEË FËLHPFËFA
GÌÌFÍ	TG	PÙÙÍ ¢Í ¢Ì	ÈÈÌJ	FÍÈHÏH	È€GÏ	FÍË	^	F€ÍÈGÎÌGFÏÈEÍI	HEE	HEEE GELÍGPFEFA
ĜJ FÍ	TH	PÙÙÍ ¢Í ¢Ì	ÈÏG	FÍÈH H	Ì€HÍ	FÍË	^	F€ÍÈGÎÌGFÏÈEÍI	HEÈEÏ	HEEE FËÎJPFËR
Gï€ FÍ	TI	PÙÙÍ ¢Í ¢Ì	È΀	FÍÈH H	È€H	FÍË	^	F€ÍÈGÎÌGFÏÈEÍI	H€È€Ï	HEEEË FË PFËFA
GÏF FÍ	ТÍ	PÙÙÍ ¢Í ¢Ì	È€ÌÍ	FÍÈḦ́H	Ì€FÌ	FÍË	^	F€ÍÈGÎÌGFÏÈEÍI	H€È€Ï	HeÈEÏFÈÈÍGPFËFà
G G FÍ	ΤÎ	PÙÙFG¢Î ¢Ì	ÉIJÌ	FHĚÍ	È€J€	ĠÈ	^	FGJÈËIJIGFÈHÏ	Ì€ËJÌ	FHFËÍÍ FÈH PFËà
ÜQÜQEËHC)Áx∧¦∙ãi}Á	ÊÊÊÊ ÁXXXXÃT	KaliliailiaÓa	akĭ∣æeði	}∙aÕ¦æçã	ĉaÙc^^	ÁŒ	}ā;*´Õ¦^æeÁ[[{	ÈHåáÁ	Úæ*^ÆF

Ü©ÜOEEHÖÁX^¦•ą[}ÁrîÈEEEİÁWWWAZTKaEEEBÄÄÖæq&&`|ææqã}}•aÕ¦æçãĉaÙo?^|ÁQĘ}]a]*´Õ¦^ææA[[{ÈHåáA

A Ya VYf 5=G7 % h, fl * \$!%\$L 5 G8 GhYY 7 c XY 7 \ YW_g ff c bljbi YXL

ŠÔ	T^{ à^¦	Ù@#}^	WÔÁT æ¢	Š[&Žcá	Ù@ælÁ\Ô	Š[&Žcá	Öã	Ú}&-Ð{{ÁŽa	áÚ}oÐ[{ÁŘ(á		<u>₩</u> }:::Ð[₩ÊÔà Ò˘}
GÏH FÍ	TF€	ÔF€¢FÍ ÈH	Ē€ÌF	€	È€GH	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈHFJ	<u>GÌĚÎH GÈÎÏ PFËFà</u>
GÏIFÍ	TFF	ÔF€¢FÍ ÈH	ÊÏH	€	<u>È</u> lì	€	^	ÍÌÈHÍÏ	JÎĔÏÍ	HÈHFJ	GÌĒĽÎH GĒĒĨÍ PFĒFÈA
GÏÍ FÍ	T FG	ÔF€¢FÍ ÈH	ÊÌÌ	€	ÈÉÍG	€	^	ÍÌÈÍÏ	JÎĚÏÍ	HÈHFJ	GÌḖÎH GḖÍÏ PFḖFà
GÎÎFÍ	T FH	ÔF€¢FÍ ÈH	ÊÌÌ	€	ÈÉÍG	€	^	ÍÌÈHÍÏ	JÎĔÏÍ	HÈHFJ	<u>GÌḖÎH GḖĪF PFḖFà</u>
GÏĪFÍ	T FI	ÔF€¢FÍ ÈH	ÈE€F	€	È€GÌ	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÍH GÈÉÎJPFËFà
GÏÌFÍ	<u> </u>	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚ	È€FF	J	^	GJÈGÍ G	JÎĚÏÍ	HÈHFJ	GOĐĚGI FÈEHÎ PFËETà
GIJFÍ	<u> </u>	ÔF€¢FÍ ÈH	È€€Ï	ΙĔ	È€H	€	^	GJÉGÍ G	JÎĚÏÍ	HÈHFJ	GGÉGI FÉFĤ PFÉFà
GÌ€ FÍ	T FÏ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚÍ	È€F€	€	^	ĠĔFH	JÎĚÏÍ	HÈHFJ	GOÈHÎ FÊEHÎ PFËETà
Ġ F FÍ	T FÌ	ÔF€¢FÍ ÈH	È€FI	ÍÈ	È€GI	FFË	^	FÏĒ€J	JÎĚÏÍ	HÈHFJ	FÌ FÈFĤ PFËFà
Ġ G FÍ	T FJ	ÔF€¢FÍ ÈH	È€FG	ÍÈÍ	È€€I	€	^	FJÈI H	JÎĚÏÍ	HÈHFJ	FJÈUÌ FÈFĤ PFËFà
GH FÍ	TG€	ÔF€¢FÍ ÈH	È€FI	ÍÈ	È€H	FFË	^	FÏĒ€J	JÎĔÏÍ	HÈHFJ	FÌ FÈHÎ PFËFà
GIFÍ	TGF	ÔF€¢FÍ ÈI	ĒÍG	€	È€IG	€	^	ÍÎĤÍ	JÎĔÏÍ	HÈHFJ	<u>GÌËÎH GËÎÎ PFË</u> à
GÍÍFÍ	TGG	ÔF€¢FÍ ÈI	<u>ÈÍ H</u>	€	<u>È</u> €IG	€	^	ÍÌÈÍÏ	JÎĔÏÍ	HÈHFJ	<u>GÌḖÎH GḖĪÍ PFḖFà</u>
GÎÎFÎ	TF	PÙÙÍ ¢Í ¢Ì	Ē	FÍ ÈH H	È€FF	FÍĽÉHÎ	^	F€ÍÈGÌÌ	GFÏÈ€ÍI	HEE	HEEË FËIHPFËFà
GÎĪFÎ	ΤG	PÙÙÍ ¢Í ¢Ì	ĒĠÏ	FŒÈGJ	È€GH	€	^	F€ÍÉGÍÌ	GFÏÈEÍI	H€È€Ï	HEEË FËFII PFËFà
GÌÌFÎ	TH	PÙÙÍ ¢Í ¢Ì	ÈH€H	JÈÌÍ	È€HÍ	€	^	F€ÍÉGÍÌ	GFÏÈEÍI	HEE	HEEE FEFJ PFËFà
ĠJ FÎ	<u> </u>	PÙÙÍ ¢Í ¢Ì	ÈGJÏ	JÈÌÍ	È€H	€	^	F€ÍÈGÎÌ	GFÏÈEÍI	H€È€Ï	HEEË FËFÌ PFËFà
GJ€ FÎ	<u> </u>	PÙÙÍ ¢Í ¢Ì	ÊÎÏ	JÈFH	È€FÌ	€	^	F€ÍÈGÎÌ	GFÏÈ€ÍI	HEE	HEEË FËGHPFËFà
GJF FÎ	ΤÎ	PÙÙFG¢Î ¢Ì	ÈG€I	FHĚÍ	È€JÏ	€	^	FGJÈÏJ	IGFÈHÏ	Ì€ËJÌ	FHFËÍÎ FÈH PFËà
GJG FÎ	TF€	ÔF€¢FÍ ÈH	Ē€ÌF	€	È€GH	€	^	ÍÌÈHÍÏ	JÎĔÏÍ	HÈHFJ	<u>GÌḖÎH GḖĪÍ PFḖFà</u>
GJH FÎ	TFF	ÔF€¢FÍ ÈH	ĒÏI	€	<u>È</u> lì	€	^	ÍÌÈÍÏ	JÎĔÏÍ	HÈHFJ	GÌĚÍH GÈÉÎ PFÉFà
GJI FÎ	T FG	ÔF€¢FÍ ÈH	ÊÌÌ	€	È€ÍG	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÎH GÈÊÎG PFËFà
GJÍFÎ	T FH	ÔF€¢FÍ ÈH	ÊÌÏ	€	È€ÍG	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĚÍH GÈĒÍÍ PFËFà
GJÎFÎ	<u> </u>	ÔF€¢FÍ ÈH	ÈE€G	€	È€GÌ	€	^	ÍÌÈHÍÏ	JÎĚÏÍ	HÈHFJ	GÌĒĽÎH GĒEÎF PFĒETA
GJÏFÎ	<u> </u>	ÔF€¢FÍ ÈH	È€€Ï	ΙĚ	È€FÍ	J	^	GJÉG G	JÎĚÏÍ	HÈHFJ	GGÉIGI FÉFHÍ PFÉFà
GJÌFÎ	T FÎ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚ	Ì€€Î	J	^	giếg g	JÎĚÏÍ	HÈHFJ	GOÐĚGI FÈÈHÎ PFËFà
GJJ FÎ	T FÏ	ÔF€¢FÍ ÈH	Ì€€Ï	ΙĚÍ	Ì€€Î	€	^	ĠĚFH	JÎĚÏÍ	HÈHFJ	GOÈHÎ FÊEHÎ PFËETà
H€€ FÎ	T FÌ	ÔF€¢FÍ ÈH	È€FI	ÍÈ	È€Ê	€	^	FÏḖ€J	JÎĚÏÍ	HÈHFJ	<u>FÌ</u> <u>FË</u> HÎ <u>PFË</u> à
H€FFÍ	T FJ	OF€¢FI ⊞	ÆFG	IEI	E€€I	€	^	FJEI H	JĨĒIJ	HEHFJ	FJEUI FEH PFEa
H€G FI	TG€	OF€¢FI ⊞	E€FI	IE	€G€	FFE	^	FIĒ€J	JĨĒIJ	HEHFJ	<u>FI</u> F ⊞ H PF⊞à
HEHFI	TGF	OF€¢FI ⊞	EI H	€	€IG	€	<u>^</u>	<u> </u> <u>H</u>	JIEII	HEHFJ	GEIH GEII PFETà
H€I FI	TGG	OF€¢FI ⊞	<u>EIH</u>	€	€G	€	<u>^</u>		JIEII	HEHFJ	GIEIH GEFII PFEFà
He FI	TF	PUUI¢I¢I	EG€I	FI EH H	E€	FIEH	Î.	F€IEGI	GFIEEII	HEEE	HEEE FEIHPFEFà
H€I FI	TG	PUUI¢I¢I	EGJ€	FIHH	€G	FIH	<u>^</u>	F€IEGI	GFIE€II	HELE	HELE GEIFPFEra
H€I FI	<u>TH</u>	PUUI¢I¢I	<u>EIH</u>	FIHH	<u>t€</u> H	FIH	[°]	F€IEGI	GFIE€II	HELE	
H€I FI	<u> </u>	PUUI¢I¢I	EI€	FIHH	<u>t€H</u>	FIH	^	F€IEGI	GFIE€II	HELE	
H€J FI			<u>t</u> €II	HHHH		FIH		F€IEGI	G+IL€II	HELE	
HF€ FI		PUUFG¢I¢I	<u></u> E€E	FHEI	<u>t</u> €IJ	GF	· ·	FGJEIJ	IGHH	I€⊞JI	
		OF€¢FI⊞		ŧ		€	^			HEHFJ	
HFG FI		OF€¢FI⊞		€		€	<u> </u>		JIHII		
	TFG	OF€¢FI⊞		€	<u>E</u> G	€	_		JIHII	HEHFJ	
HEI EI		OF€¢FI⊞		€		€	^			HEHFJ	
		OF€¢FI⊞	<u></u> Et€F	€	<u>ite</u> Gi	€	^			HEHFJ	
		OF€¢FI ⊞	I€€I	1 EE		J	^			HEHFJ	
		OF€¢FI ⊞	I J E€I	l E	<u>IEEH</u>	€	^			HEHFJ	
				ामा (मे		E	^	GEFH			
				l EL	TEGI	FFE	^	<u> ⊢I E</u>			
	TCC		DEFG	ा <u>ध</u> ा र्रो		E	^				
		OF€¢FI ⊞		I E	H J J	FFE	^	FI ⊞ €J			
			È	E	È	E	^				
				– € ⊏íÈIII		EÍĚLÍ	^	EAD	<u>JIEII</u> GEÏÈEÍI	LICE	
	IF		шгG	րուն		пип					
ÜQÙQEËİÖ	ÓÁX^¦∙ã[}Ák	ÎÈ€È Á₩₩₩ŹŢ	KattattaÔa	ek (æa)	∙aÕ¦æçã	ćaÙ¢^∧	ÁCĘ	} ā; *´ Õ¦/	\æeÁ[[{	ÌHåáÁ 🗌	Úæ*^ÆG

$$\label{eq:constraint} \begin{split} \ddot{U}\dot{Q}\dot{Q} \\ \dot{H}\ddot{Q}\dot{A} \\ \dot{H}\ddot{A} \\ \dot{H}\ddot{A} \\ \dot{H}\ddot{A} \\ \dot{H}\ddot{A} \\ \dot{H}\dot{A} \dot$$

A Ya VYf 5=G7 % h, fl * \$!%\$L 5 G8 GhYY 7 cXY7 \ YW g ff cbljbi YXL

ŠÔ	T^{ à^¦	Ù@a∳^	WÔÁTæ¢	Š[&Žcá	Ù@æ¦Á\∕Ô	ŠĮ &Žcá	Öã	Ú}&	ÍáT}^^Ð{[<u>ﷺ</u> }:::Də{(ﷺ Ôà Òĭ}
HCÍFÌ	ΤG	PÙÙÍ ¢Í ¢Ì	È΀	ÌÈHF	Ì€GF	€	^	F€ÍÈGÎÌGFÏÈEÍ	IH€ÈEÏ	HEEE FEGPFEFa
HGÎFÌ	TH	PÙÙÍ ¢Í ¢Ì	ÈGJH	ÌÈÏÏ	ÈEHJ	€	^	F€ÍÈGÎÌGFÏÈEÍ	IH€ÈEÏ	HEÈËË FÈËGÌ PFËFà
HCÏFÌ	ΤI	PÙÙÍ ¢Í ¢Ì	ÈGJH	ÌÈÏÏ	ÈEHJ	€	^	F€ÍÈGÎÌGFÏÈEÍ	IH€ÈEÏ	HEÈËË FÈËGÌ PFËFà
HGÌ FÌ	ΤÍ	PÙÙÍ ¢Í ¢Ì	È΀	ÌÈHF	Ì€GF	€	^	F€ÍÈGÎÌGFÏÈEÍ	IH€È€Ï	HEEEË FEEGEPFEFà
HGJ FÌ	ΤÎ	PÙÙFG¢Î ¢Ì	ÈÈÌJ	FHĚÍ	ÈEII	€	^	FGJÈÏJIGFÈH	Ĩ Ì€ĨIJÌ	FHFËÍÎ FÈH PFËà
HH€FÌ	TF€	ÔF€¢FÍ ÈH	È€GH	€	Ì€€Î	€	1	ÍÎÈHÍÏ JÎĚÏÍ	HÈHFJ	GÌĚÍH GÈEEFÍ PFËFà
HHF FÌ	T FF	ÔF€¢FÍ ÈH	ÈEIÎ	€	È€FF	€	`	Í Î ÈHÍ Ï J Î Ě Ï Í	HÈHFJ	ĠĔĨĦ FÐÏGPFËFà
HHG FÌ	T FG	ÔF€¢FÍ ÈH	ÈEIJ	€	È€FG	€	^	Í Î ÈH Ï J Î Ě Ï Í	HÈHFJ	ĠĚÎH FÈÌÌ PFËFà
HHH FÌ	T FH	ÔF€¢FÍ ÈH	ÈEIJ	€	È€FG	€	^	Í Î ÈH Ï J Î Ě Ï Í	HÈHFJ	ĠĚÎH FÈÌÌ PFËFà
HH FÌ	T FI	ÔF€¢FÍ ÈH	È€GÌ	€	Ì€€Ï	€	^	ÍÎÈHÍÏ JÎĚĬÏÍ	HÈHFJ	ĠĚĨH F₿J PFËFà
HHÍ FÌ	T FÍ	ÔF€¢FÍ ÈH	È€€I	ΙĚ	Ì€€Ï	J	^	GUÈGÍG JÎĚĬĬ	HÈHFJ	GOĐĚGI FÈĒHÎ PFËFà
HHÎ FÌ	ΤFÎ	ÔF€¢FÍ ÈH	È€€I	ΙĚ	È€€I	J	•	GUÈGÍG JÎĚĬĬ	HÈHFJ	GOĐĚGI FÈEHÎ PFËETà
HHÏ FÌ	ΤFΪ	ÔF€¢FÍ ÈH	È€€I	ΙĚΊ	È€€G	€	^	ĠÌĖ̈́FH JÎĖ́ÏÍ	HÈHFJ	GGÈĤ FÈEĤ PFËFà
HHÌ FÌ	T FÌ	ÔF€¢FÍ ÈH	È€€J	ÍÈ	Ì€FÍ	€	^	FÏĖĨ€J JÎĖĬĬ	HÈHFJ	FÌ FÈHÎ PFËFà
HHU FÌ	T FJ	ÔF€¢FÍ ÈH	Ì€€Ï	ÍÈÍ	È€€G	€	^	FJÈJIH JÎĚĬÍ	HÈHFJ	FJÈUÌ FÈFĤ PFËFà
HI€ FÌ	TG€	ÔF€¢FÍ ÈH	È€€J	ÍÈ	Ì€FÎ	FFË	^	FÏĒ̈́€J JÎĔĬĬ	HÈHFJ	FÌ FÈHÎ PFËFà
HIF FÌ	TGF	ÔF€¢FÍ ÈH	È€IF	€	È€F€	€	•	íîÈHíï JÎĚĬĬ	HÈHFJ	ĠĚÎH FÈÌJ PFËFà
HIG FÌ	TGG	ÔF€¢FÍ ÈH	ÈEIF	€	È€F€	€	^	Í Î ÈH Ï J Î Ě Ï Í	HÈHFJ	ĠĔÎH FÈÌÌ PFËFà
HIH FJ	TF	PÙÙÍ ¢Í ¢Ì	Ì€FÏ	FÍÈHÏH	È€€F	FÍĚHÎ	^	F€ÍÈGÎÌGFÏÈEÍ	IH€ÈEÏ	HEÈËË FËLHPFËFà
HII FJ	ΤG	PÙÙÍ ¢Í ¢Ì	È€JÎ	FÍÈHÏH	Ì€GH	FÍË	^	F€ÍÈGÎÌGFÏÈEÍ	IH€ÈEÏ	HEÈEË FÈHIG PFËFà
HIÍ FJ	TH	PÙÙÍ ¢Í ¢Ì	ÈGIÎ	ΪÈΉ́Ј	È€I€	FÍË	^	F€ÍÈGÎÌGFÏÈEÍ	IH€ÈEÏ	HEÈËË FÈËÍJPFËFà
HIÎ FJ	TI	PÙÙÍ ¢Í ¢Ì	ÈGIÌ	ΪĚGH	È€HJ	FÍË	^	F€ÍÈGÎÌGFÏÈEÍ	IH€ÈEÏ	HEÈËË FÈËÍÎ PFËFà
ΗΪFJ	ТÍ	PÙÙÍ ¢Í ¢Ì	ÈEHG	ΪĚGH	È€G€	FÍË	^	F€ÍÈGÎÌGFÏÈEÍ	IH€ÈEË	HEÈEË FÈEIJPFËEFà
HIÌ FJ	ΤÎ	PÙÙFG¢Î ¢Ì	ÈÈÌJ	FHĚÍ	È€I€	ĠÈ	^	FGJÈËÏJ∣IGFÈÈ⊦	Ĩ Ì€ĨJÌ	FHFËÍÍ FÈH PFËà
HIJ FJ	TF€	ÔF€¢FÍ ÈH	È€GH	€	Ì€€Î	€	^	Í Î ÈH Ï J Î Ě Ï Í	HÈHFJ	GÌĚÍH GÈ€GH∣PFËFà
HÍ€ FJ	TFF	ÔF€¢FÍ ÈH	ÈEIÍ	€	ÈEFF	€	^	ÍÎÈHÍÏ JÎĚÏÍ	HÈHFJ	ĠĚÎH FÈJGPFËFà
HÍF FJ	T FG	ÔF€¢FÍ ÈH	ÈEIJ	€	È€FG	€	^	ÍÎÈHÍÏ JÎĚÏÍ	HÈHFJ	ĠĚÎH FÈĴÍ PFËFà
HÍG FJ	T FH	ÔF€¢FÍ ÈH	ÈEIJ	€	È€FG	€	^	ÍÎÈHÍÏ JÎĚĬÍ	HÈHFJ	ĠĚÎH FÈÏF PFËFà
HÍH FJ	T FI	ÔF€¢FÍ ÈH	Ì€GÌ	€	Ì€€Ï	€	^	Í Î ÈH Ï J Î Ě Ï Í	HÈHFJ	ĠÌĔĹÎH GÈ€GF PFËFà
HÍI FJ	T FÍ	ÔF€¢FÍ ÈH	Ì€€I	ΙĚ	È€€F	J	^	GUÈCÍG JÎĚ ĬÍ	HÈHFJ	GOËLGI FÈEHÎ PFËFà
HÍÍ FJ	T FÎ	ÔF€¢FÍ ÈH	È€€I	ΙĚ	È€E	€	^	GUÈGÍG JÎĚĬĬ	HÈHFJ	GOÉLGI FÈEHÎ PFËFà
HÍÎ FJ	ΤFΪ	ÔF€¢FÍ ÈH	È€€I	ΙĚΊ	Ì€€Î	€	^	ĠĖFH JÎĔĬĬ	HÈHFJ	GGÈĤ FÈFĤ PFËFà
HÍÏ FJ	T FÌ	ÔF€¢FÍ ÈH	È€€J	ÍÈ	È€G€	FFË	^	FÏĒĖ€J JÎĖ́IÍ	HÈHFJ	FÌ FÈEHÎ PFEEFà
HÍÌ FJ	T FJ	ÔF€¢FÍ ÈH	Ì€€Ï	ÍÈÍ	È€€G	€	^	FJÈJIH JÎĚÏÍ	HÈHFJ	FJÈUÌ FÈFĤ PFËFà
HÍJ FJ	TG€	ÔF€¢FÍ ÈH	È€€J	ÍÈ	È€FF	€	^	FÏĒĖ€J JĪĖĬĪ	HÈHFJ	FÌ FÈHÎ PFËFà
H΀ FJ	TGF	ÔF€¢FÍ ÈH	È€IF	€	È€F€	€	^	ÍÎÈHÍÏ JÎĚĬÍ	HÈHFJ	GÌĚÎH FÈÌJ PFËFà
HÎF FJ	TGG	ÔF€¢FÍ ÈH	È€IF	€	È€F€	€	^	ÍÎÈHÍÏ JÍĚÏÍ	HÈHFJ	GÌĚÎH FÈÌÌ PF⊞à

A Ya VYf K ccX7cXY7\YWg

	ŠÔ	T^{ à^¦	Ù@a≱^	WÔÁTæ¢	ŠĮ &Žcá	iÙ@æ¦ÆË	ËŠ 8Žci	Öã	Ø8ØÃ•ã	Ø0ÂŽ•ãå	ØàFØÄŽÈÈ	ÎZâGAÂXÊ	È¢¢ÃX∙ãã	άÜÓ	ÔŠ	ÔÚ	Ò~}
F	F	ΤÏ	HĚÝFIØÙ	È€JI	ÍÈ	ÈGFÎ	FFË	^	ÈFÎ	FÈ€Ï	GÈĜ	GÈHGÍ	ÈF	FGETFH	ÈÏG	È€JG	HÈËH
G	F	ΤÌ	HĚÝFIØÙ	ÈΪF	ÍÈÍ	ÈIG	€	^	ÈÎJ	FÈ	GÈGÎÍ	GÈHGÍ	ÈF	FGÈGGÎ	ÈΪΙ	ÈGFÎ	HÈËH
Н	F	ΤJ	HĚÝFIØÙ	È∃I	ÍÈ	ÈJΗ	FFË	^	ÈFÎ	FÈ	GÈGÎ	GÈHGÍ	ÈF	FGÊLFH	ÈΪG	È€JG	HÈËH
1	G	ΤÏ	HĚÝFIØÙ	È€€€	€	ÈEFÌ	€	:	ÈFÎ	FÈ€Ï	GÈĜ	GÈHGÍ	ÈF	FGÊËFH	ÈÏG	ÈJG	HÈË
Í	G	ΤÌ	HĚÝFIØÙ	È€€€	€	Ì€FÍ	€	1	ÈÎJ	FÈ€Ï	GÈGÎÍ	GÈHGÍ	ÈF	FGÈGGÎ	ÈΪΙ	Ē	HÈË
Î	G	ΤJ	HĚÝFIØÙ	È€€€	€	È€€€	€	1	ÈFÎ	FÈ€Ï	GÈGÎ	GÈHGÍ	ÈF	FGÊTFH	ÈÏG	ÈJG	HÈËH
Ï	Η	ΤÏ	HĚÝFIØÙ	ÈIJ	ÍÈ	ÈH	€	^	ÈFÎ	FÈ€Ï	GÈĜ	GÈHGÍ	ÈF	FGÊÊFH	ÈÏG	È€JG	HÈËH
Ì	Η	ΤÌ	HĚÝFIØÙ	ÈÏF	ÍÈÍ	ÈÉÍΪ	€	^	ÈÎJ	FÈ€Ï	GÈGÎÍ	GÈHGÍ	ÈF	FGÈGGÎ	ÈΪΙ	ÈFÎ	HÈËH
J	Η	ΤJ	HĚÝFIØÙ	ÈIJ	ÍÈ	ÈGIH	FFË	^	ÈFÎ	FÈ€Ï	GÈĜ	GÈHGÍ	ÈF	FGÊEFH	ÈÏG	È∎JG	HÈËH
F€		ΤÏ	HĚÝFIØÙ	ÌÐFÍ	ÍÈ	È∃€	FFË	^	ÈFÍ	ÈÎΗ	GÈ€IG	GÈ€JH	ÈÏJ	FGELFH	Èïî	ÈFG	HÈËH
												0_0011					

Úæ*^ÆH Ü©ÜQEEHÖÁX^¦•ą[}ÁrîÈeEE Á¥¥¥¥¥ZTKAEEBEÖæ4&ĭ|æaqã}•aÕ¦æçãĉaÙd^^|ÁQĘ}ĝ*´Õ¦^æaA[[{ È HåáÁ

AYaVYfKccX7cXY7\YWgff7cbhjbiYXŁ

ŠÔ	T^{ à^¦	Ù@a∦_^_\	WÔÁTæ¢	ŠĮ &Žcá	Ù@aa¦ÆË	ĔŠĮ &Žcá	iÖã	Ø8ØŽ•ã	ØdÄŽ•ãa	ØàFØÄXÈ	HE GAX H	È¢ÇØÃ.∙ã	á ÜÓ	ÔŠ	ÔÚ	Ò~}
FF I	ΤÌ	HĚÝFÌØÙ	È£J€	ÍÈÍ	ÈÍÌ	€	^	ÈÎÏ	ÈÎΗ	GÈ€IÎ	GÈ€JH	ÈGÏJ	FGÈGGÎ	ÈΪÌ	ÈGHU	HÈËH
FG I	ТJ	HĚÝFIØÙ	ÈGFÍ	ÍÈ	ÊFI	FFË	^	ÈFÍ	ΒÎΗ	GÈ€IG	GÈ€JH	ÊĞIJ	FGÊFH	Èïî	ÈGFG	HÈËH
FH Í	<u> </u>	HĚÝFIØÚ	ÊIJ	ÍĒ	<u>ĒH</u>	€	^	ĒFĨ	FĒ€Ï	GÊĴ	GËHGÍ	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	FGETFH	₿ÏG	ĒJG	HÐËH
FI Í	ΤÌ	HĚÝFIØÚ	ĒĨF	ÍÉÍ	Ē	€	^	ĒĨJ	FĒ€Ï	GEGÎÎ	GËHGI	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	FGEGGĨ	ÐΪΙ	ÉFÏ	HÐËH
<u>FI</u>	Т <u>Ј</u>	HEYFIØU	<u>Ē ji</u>	ÌÉ	<u> H</u>	FFE	^	<u> E F</u>	F€	GEI	GÉHĞ		FGEFH	ÐĮG	<u></u> €JG	HÐĒH
FI I	<u></u>	HEYFIØU	ΕĻ	IE	<u>EIH</u>	FFE	^	EFI	FEH	GEIF	G⊟€	<u> </u>	FGEEFH		EII	HEEH
FI I	<u></u>	HEYHOU	EH	I E I	<u>EFI</u>	€	^	<u><u><u></u></u><u>H</u><u>G</u></u>	FEH	Gtt€G	G⊟€	<u> </u>	FGEG	ΒÜ	EII	HUH
FI I		HEYHOU	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	1 H		FFH		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	FEH	GEUF	GbJ€I		FGELFH			HUH
FJ I	<u> </u>	HEYHOU	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	I⊞ (èt)		FFE	•	<u><u><u></u></u><u>H</u><u>F</u>I</u>	FEH	GETF	GHII	<u>HI</u>	FGELFH	<u> H</u> II	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	HUH
GEI	<u>+</u>	HETFIDU		弼ĺ	<u>itt</u> €J	. €	^		FEH	GEU	GEII		FGEGG	bî í	<u>⊞IJ</u>	HUDH
GFI		HE YFIOU	<u>ttl€</u>	ĺĽ		FFB	^			GETF	Getti		FGEFH		<u>tti</u>	HUDIT
	+	LITIDU		I EL		FFE C	^				C d d		FOLLER			
	+++++++++++++++++++++++++++++++++++++++	HĚÝEIQÙ		í È		E	^	È CÌ		OT EG	Co⊒€ Annoia		FOLGO			
d I	<u>т</u>	HŤÝELØÙ		í È		ccă	^			OTIL			FCH	⊡ òîí		цо́ты
G J	<u> </u>	HĚÝEIQÙ		ίά		FFE E	^			OŤI	CÊTI		FCITCI			преп
G J	+++	HĚÝEIØÙ	<u>ш</u> и	í È		E E E E E	^			CÉÌE	CAÈTI		FGH FH	۵۱ J ۵î í		
	<u>т</u>	HĚÝEIØÙ	<u></u> ≣a	ÍÈ		FFA	^	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	FIEF	HÈIH	ШШЕС		FGH FH	ріі рні	Щ. ПЕСЕ	
		HŤÝFIØÙ		í È í		£	^	μÜ	FFFC	HĚĒ	нËС	<u>È</u> IÎ	FGÌTGÎ	È I Î	<u>н</u> ці	
	T1	HĚÝEIØÙ	inter i inter inter inter inter inter inter i i	іщ і́ф	E C	£	^	ЩП Ф.С	FFFC	HÈIH	НËС	È IÎ	FGTEFH	<u>р</u> ні	Щ. ПЕСЕ	
	<u>тї</u>	HŤÝFIØÙ	<u>⊯G</u>	ÍÈ		£	^	<u>н</u> с	FFFG	HÈIH	HĒG	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	FGH FH	Èн	<u>⊯G</u>	HÈË
HG FF	TÌ	HĚÝFIØÙ	ÈEE€	ÍÈÍ	REIG	£	^	μŢ	FFFG	HĚFÌ	HËG	<u></u> È lÎ	FGÈGÎ	ÀIÎ	ÈНÏ	HÀËH
HH FF	TJ	HĚÝFIØÙ	<u>₩</u> G	ÍĤ	<u>₩</u>	FFĤ	^	ĒG	FFFG	HEIH	HĒG	<u>Ē</u>	FGEFH	Äн	ĒŒ	HÈË
HI FG	ΤΪ	HĚÝFIØÙ	Ēđ	ÍÈ	ÊŒ	FFH	^	ĒG	FFFG	HÈUH	HĒG	Ĥ. lî	FGETFH	Èн	ÊŒ	HÈË
HÍ FG	τì	HĚÝFIØÙ	Ê ÊFF€	ÍÈÍ	<u>i i u</u>	€	^	ĤÏÍ	FIFFG	HĚFÌ	HĒG	Ĥ. lî	FGÈGGÎ	È Î	ĒHÏ	HÈË
HÎ FG	TJ	HĚÝFIØÙ	ĒŔ	ÍÈ	ŔĴÎ	FFĦ	^	ĤG	FIFFG	HÈJH	HĒG	ĤJÎ	FGETFH	ЪН	ÊŒ	HÈË
HÏ FH	ΤÏ	HĚÝFIØÙ	Ēď	ÍÈ	ĤG	FFH	^	ĤG	FIFFG	HÈJH	HĒG	Ĥ JÎ	FGETFH	Ъ́н	ÊŒ	HÈË
HÌ FH	TÌ	HĚÝFIØÙ	ÌÈF€	ÍÈÍ		€	^	ĤÏÍ	FIFFG	HĚFÌ	HĒG	Ĥ JÎ	FGÈGCÎ	È I Î	ÎÊHÎ	HÈË
HJ FH	TJ	HĚÝFIØÙ	ÈĜ	ÍÈ	È€J	FFÊ	^	ÈG	FË FG	HÈJH	HËG	ÈJÎ	FGETFH	ЪН	ÈGF	HÈËH
I€ FI	ΤÏ	HĚÝFIØÙ	ÈĞÎÎ	ÍÈ	ÈGÏ	FFÊ	^	ÈG	FËFG	HÈJH	HËG	ÈJÎ	FGETFH	ÈН	ÈGF	HÈËH
IF FI	ΤÌ	HĚÝFIØÙ	ÈGIG	ÍÈÍ	ÈЛН	€	^	ÈÏÍ	FËFG	HĚFÌ	HËG	ÈJÎ	FGÈGCÎ	ÈΠÎ	ÈHÏ	HÈËH
IG FI	ТJ	HĚÝFIØÙ	Èäî	ÍÈ	ÈHÏF	FFË	^	ÈG	FËFG	HÈJH	HËG	ÈJÎ	FGÊFH	ЪН	ÈGF	HÈËH
IH FÍ	ΤÏ	HĚÍÝFIØÙ	Èäî	ÍÈ	ÈGJ	FFĚ	^	ÈG	FËFG	HÈJH	HËG	ÈJÎ	FGETFH	ЪН	ÈGF	HÈËH
II FÍ	ΤÌ	HĚÍÝFIØÙ	ÈGIG	ÍÈÍ	ÈĴÌ	€	^	ÈÏÍ	FËFG	HĚFÌ	HËG	ÈJÎ	FGÈGGÎ	ÈlÎ	ÈFHÏ	HÈËH
IÍ FÍ	ТJ	HĚÍÝFIØÙ	ÈĠÏÎ	ÍÈ	ÈFÍ	FFË	^	ÈG	FËFG	HÈJH	HĒG	ÈJÎ	FGELFH	ЪН	ÈGF	HÈËH
IÎ FÎ	ΤÏ	HĚÝFIØÙ	ÈĜ	ÍÈ	ÈGF	FFË	^	ÈG	FËFG	HÈJH	HËG	ÈJÎ	FGÊÊFH	ЪН	ÈGF	HÈËH
ΙΪ FÎ	ТÌ	HĚÝFIØÙ	ÈF€	ÍÈÍ	Ì€JI	€	^	Èïí	FËFG	HĚFÌ	HËG	ÈJÎ	FGÈGGÎ	ÈlÎ	ÈFHÏ	HÈËH
IÌ FÎ	ТJ	HĚÝFIØÙ	ÈG	ÍÈ	ÉĠÎÎ	FFË	^	ÈG	FËFG	HÈJH	HËG	ÈJÎ	FGÊFH	ЪН	ÈGF	HÈËH
IJ FÏ	<u> </u>	HĚÝFIØÙ	ĒĠ	ÍÈ	ÈG	FFË	^	ÈG	FËFG	HÈJH	HËG	ÈJÎ	FGÊÊFH	ÐН	ÊGF	НЭЁН
Í€ FÏ	ТÌ	HĚÝFIØÙ	ÈF€	İÈÍ	È€JÌ	€	^	Èïí	FËFG	HẾFÌ	HËG	ÈJÎ	FGÉGGÎ	ΒÌΪ	ÈHÏ	HÈËH
ļ f Fī	ТJ	HEİÝFIØÙ	ĒĞ	İÈ	Ē€J	FFE	^	ĒG	FËFG	HĖJH	HḖG	ĒJÎ	FGEÊFH	ÐН	ĒGF	HÐËH
Í G FÌ	ΤÏ	HEYFIØÙ	E ÍÍ	ÌÈ	Ê€H	FFË	^	ĒG	FËFG	HĖJH	HEG	ĒJÎ	FGEÉFH	θH	ĒŒ	HÐËH
<u>Í H</u> FÌ	<u> </u>	HỆÝFIØÙ	Ē€ÏÏ	IĖİ	Éİ€	€	^	ÉÏÍ	FËFG	HEÈFÌ	HĒG	<u>ĒJÏ</u>	FGEGĜ	ÐΪΪ	<u>Ē</u> HÏ	HÐËH
ļļ FÌ	ТJ	HEYFIØÙ	E Ĩ Í	ÌÈ	Ê€	FFÉ	^	ĒG	FËFG	HĘJH	HĒG	ĒJÏ	FGEFH	ĘΗ	ÊŒ	HÐËH
JI FJ	<u></u>	HEYFIØÙ	<u>€</u>	ļĒ	EGIJ	FFE	Î.	ĒĢ	FEFG	HÊ ÎH	HEG	ĒJÌ	FGEEFH	ÐH	₽GF	HÐ⊞
JI FJ	TI	HEYFIØÙ	€ II	IEI	€	€	^	E II	FEFG	HEFI	HEEG	EJÍ	FGEG	Ð I I	ĒΗ	H₿⊞I
II FJ	ТJ	HEIYFIØÙ	ÆÍÍ	ΙĖ	ΕΪΪ	FFË	^	EEG	FEFG	HEJH	HEEG	ΕIJΪ	FGEËFH	ÐIJ	₽£GF	HÐËH

Ü©ÜQEEHÖÁX^¦•ą[}ÁrÎÈEÈLÁÄÄÄÄÄZTKAEEÉAÄÄÄÄÄEÖæ¢&`|ææqã]•aÕ¦æçãĉaÙ&^/AQĘ}ð,*´Õ¦^ææA[[{ÈHåaÁ

Úæ*^Á∓I

C-72

C-73

fţ`cVUŁAcXY`GYhtjb[g

Öãr] æî ÂÛ^&cā[}•Á[¦ÁT^{ à^¦ÁÔæ‡&•	lí Á
Tæ¢ÁQ;c^¦}æþÁÜ^&cãį}●ÁĮ¦ÁT^{{à^¦ÁÖæ¢&•	JĨÁ
Qv& ĭå^ÁÜ@ea⇔ÁÖ^~[¦{æaãį}}Ñ	Ϋ́^∙
Ql&¦^ær^Áprænäjāj*ÁÖæ)jæ&sãĉÁ[¦ÁYā]åÑ	Ϋ́∧•
Ql& ĭå^ÁYæb]ā],*Ñ	Ϋ́∧•
V¦æ))•ÁŠ[æåÁÓc,}ÁQ;c^¦∙^&cā);*ÁY[[åÁYæ∥Ñ	Ϋ́∧•
Œ^ <i>æ</i> iš[æiåĀT^•@i∰aîœD	FII
T^¦*^Á⁄[^¦æ)}&^Á@jD	l É G
ÚËÖ^ cæÝOĘ æ¢°•ã•Á/[^¦æ}&^	€É€Ã
Ql& ĭå^ÁÚĔÖ^ œeÁ[¦Á∕æ]•Ñ	Ϋ́∧•
OE(t{ aeaã&aet ^ÁQc\¦aec^ÁÙcã-}^••Át[¦Á⁄aet •Ñ	Ϋ́∧•
Tæ¢ÅQ^¦æaãį}∙Å{¦ÅYæ∜ÅŰã~}^∙∙	Н
Ö¦æçãĉÁ0B&&^ ^¦æaãį}ÀĢaB•^&âGD	HCHEG
Yæ ÁT^∙@ÂÜã^ÁÇ3jD	G
Òā*^}•[ĭqā[}ÁÔ[}ç^¦*^}&^Á/[ÈÄQFÈÒËD	1
X^¦cã&æļÁCī¢ã	Ϋ́
Õ[[àæ‡ÁT^{{a^\AU¦ã^}cææã[}ÁÚ æ}^	ÝZ
Úcæða Áu[ç^¦	Ú]æ•^Á038&^ ^¦æ•^å
Ö^}æ{ ã&ÁÜ[ç^¦	028&^ ^ ¦ æe^å ÂU[ç ^ ¦
P[cÁÜ[^åÁÛc^^ ÁÔ[å^	OEDÙÔÁFI c@ÇH΀ËFEDMÁCEÙÖ
OEåbĭ∙oÁĴcã-}^••Ñ	Ÿ^∙ (@ \¦æãç^D
Ü(0)(0;0;[}}^&;a;);A;0;[å^	OFDIÖÄEL COOLII EFFEDMADEUÖ

	TV Que i attativit
ÜQÜOBÔ[}}^&&caji}ÁÔ[å^	OEDÜŐÁFIc@ÇHÍ€ÉEF€DMÁQEÜŐ
Ô[å ÁØ[{ ^åÂÙ¢^^ ÂÔ[å^	OEDUQUF€€ËFIKOEUÖ
Y [[å ÁÔ[å^	Cey őápöüéri kádelő
Y[[åÁV^{]^¦æcč¦^	ŁÁF€€Ø
Ô[}&¦^&\^[å^	OBÔ CÁFFÌËFI
Tæ•[}¦^ ÄÖ[å^	VT ÚÁ €GĒFĨ KĀDĒJÕ
OĘ~{ā}~{ ÅÖ[å^	OEDEÁCEÓT FEFI KÁCEÚCÁEZŐ (a a a a a a a a a a a a a a a a a a
	OEDÜÔÁFI c@0HÎ €ËF€DMAQEÙÖ

Þ`{ à^¦Áį,~ÂÛ@?æàÁÜ^*ãį}∙	
Ü^*ā[}ÁÛ]æ&a]*Á0,&\^{ ^}oÁ@; D	1
Óãæ¢;ãæ‡ÁÔ[`{}ÅT^c@?;å	Ó¢æ\$oÁQ;c^*¦æaãį}
Úæl{^ÁÓ^œeÁØæssq[¦ÁQÜÔŒÐ	Ē
Ô[}&\^&\AÛd^••AÔ [&\	Ü^&cæ)** æ
W∙^ÁÔ¦æ&∖^åÁÛ^&cąį}•Ñ	Ϋ́^•
W•^ÁÔ¦æ&∖^åÂÙ^&cąį}●ÂÛ æàŇ	Ϋ́^•
ÓænåÁØlæ{ā}*ÁYæ}}ãj*•Ñ	Þ[
W}`•^åÅØ[¦&^ÁYæ¦}āj*•Ñ	Ϋ́^•
Tậ,Á∓ÁÓæi,ÁÖãæ; ÉÁÚ] æ&a},*Ñ	Þ[
Ô[}&¦^c^ÂÜ^àæłÂÛ^c	ÜÒÓOEÜ´ÙÒV´OEÙVTOEÎFÍ
Tậ)Áà ÁÛc^^ Á[¦ÁÔ[ĭ{}	F
Tæ¢ÁÄÁÚ&^ Á[¦ÁÖ[ǐ{}	

Úæ*^Æ

Úæ*^ÁG

fţ`cVUŁAcXY`GYHŋb[gž7cbl]bi YX

Ù^ã;{ 38,4Ô[å^	ŒÙÔÒÄËŦ€
Ù^ã{ ã&ÁÔæ*^ÁÔ ^çæaã[}ÁĢdD	Þ[🕉 🖓 🖒 å
OEååÁÓæ•^ÁY^ãť@Ň	Ϋ́^•
ÔơÝ	È€G
ÔďZ	È€G
VÁÝÁĢ,^&D	Þ[🕉 🖓 🖒 å
VÁZÁĢ^&D	Þ[🕉 🖓 🖒 å
ÜÂÝ	Н
ÜÆ	Н
ÔơÂÔ¢] ĒÝ	ÊÍ
ÔơÔ¢] ĂZ	ËÍ
ÜŐF	F
ÙÔÙ	F
ÙF	F
VŠÁĢ^&D	Í
Üã∖ÁÔæ:	CÁN HÁQQ
Ö¦ão⁄Ôæc	U c@\{
U{ ÅZ	F
U{ ÂY	F
ÔåÁZ	I
ÔåÁÝ	I
ÜQÁZ	F
ÜQÄ	F

<chiFc``YX`GhYY`DfcdYff]Yg

	Šæè^	ÒÃĽ•ãã	ÕÃڏ∙ãã	Þř	V@r¦{ ÁçaFÒÈ	HÖ^}∙ãc ŽĐdÈ	ËŸã∿∣åŽi∙ãá	Ü^	ØĬŽ∙ãå	Üc
F	ŒJG	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	Í€	FÈ	ÎÍ	FÈ
G	OEHÎ ÁÕ¦ÈHÎ	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	HÎ	FĚ	ÎÌ	FÈG
Н	OÉÍGÁÕ¦Ě€	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	ĺ€	FÈ	ÎÍ	FÈF
1	ŒÉ€ÆÕ¦ÈÓÆÜÞÖ	GJ€€€	FFFÍ I	ÈH	ĒÍ	ĚĠ	IG	FÈ	ÎÌ	FÈH
Í	OÉ €€ÃÕ¦ÈÓÁÜ^&c	GJ€€€	FFFÍ I	ÈH	ĒÍ	ĚĠ	ΙÎ	FÈ	ÎÌ	FÈH
Î	OÉ HÁÕ¦ÈÓ	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	HÍ	FÊ	΀	FÈG
Ï	OEF€ÌÍ	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	Í€	FÈ	ÎÍ	FÈH

<chiFc``YX`GhYY`GYWFjcb`GYhg

	Šæà^∣	Ù@#}^	V^]^	Ö^∙āt}ÁŠãarc	Tæe∿¦ãæ¢	Ö^∙ã}ÁÜ` ^•	05 ÂÃ Gá	Q^ÂŽajlá	Q:ÁŽájlá	RÁŽájlá
F	Ô[˘{ }	PÙÙI ¢I ¢I	Ô[[°] { }	V°à^	CÉI€€ÃÕ¦ÈÓÁÈ	V^] 38æ	HÈHÏ	ΪÈ	ΪÈ	FŒ
G	OĘ,}āj,*	ÔJ¢FHÈ	Ó^æŧ	Ô@ea}}^	OEHÎ ÁÕ¦ÈHÎ	V^] 38æ	HÈI	FĚÍ	ΪÌ	ÈÎÌ
Н	Ó^æ	PÙÙÎ ¢I ¢I	Ó^æ	Ô@ea)}^	OH Í ÁÕ¦ ÌHÎ	V^] ã&æ	ΙÈΗ	FFÈF	G€È	GHĨ

>c]bhi7ccfX]bUhYgʻUbX`HYadYfUhifYg

	Šæè^	ÝÆxá	ΫÆά	ZÁŽecá	V^{] <i>Ä</i> 226á	Ö^cæ&@¢Ø{[{ ÁÖãæ]⊞
F	ÞF	€	€	€	€	
G	ÞG	€	F€Ĭ	€	€	
Н	ÞH	€	€	ËG	€	
1	ÞI	€	F€Ĭ	Ë	€	
Í	ÞÍ	HĚ	F€Ľ	€	€	
Î	ÞÎ	HĚ	F€Ľ	ËG	€	
-						

Ü©Ü00EEHÖÁX^¦•ã[}ÁrÎÈEÈE ÁÁÁÁÁŽT KAÈÈÈÈÈÉ¢&`|æã]}•ãÕ¦æçãĉaÙ&^|ÁQĘ}}ã]*´Ò}c^ÈHåáÁ

>c]bhˈ7ccfX]bUhYgʻUbX'HYadYfUhifYgʻff/cbhjbiYXŁ

	Šæè^	ÝÆká	ŸÄZcá	ZÄZcá	V^{]ÂĨ226á	Ö^cæ&@ÁØ[{ ÁÖãæ] ⊞
Ï	ÞÏ	€	F€Ë	€	€	
ì	ÞÌ	€	F€Ë	ËG	€	
J	ÞJ	€	€	ËĚ	€	
F€	ÞF€	€	F€Ľ	ËĚ	€	
FF	ÞFF	€	F€Ë	ËĚ	€	
FG	ÞFG	HĚ	F€Ľ	ËĚ	€	

A Ya VYf Df]a Ufm8 Uhu

	Šæà^	OÁR[ã]c	RÁR[ã}c	SÁR[ã]c)Ù^&ca[}ÐÙ@æ‡^	V^]^	Ö^∙ā}}Êãa:c	Tæe∿¦ãæ¢	Ö^• ∄} ÁÜ ັ ^•
F	TF	ÞF	ÞÏ			Ô[˘{}	Ô[゙{}	V°à^	ŒÍ€€ÃÕ¦ÈÓÈ	Ë V^]ã&æe)
G	ΤG	ÞH	ÞÌ			Ô[˘{}	Ô[˘{}	V°à^	ŒÍ€€ÃÕ¦ÈÓÈ	Ë V^]ã&æe∳
Н	T F€	ÞG	ÞÍ			OĘ.}ął*	Ó^æ	Ô@ee}}^	O EHÎ ÁÕ HÈHÎ	V^] ã&æ
1	ТÍ	ÞI	ÞÎ		FÌ€	OĘ.}ął*	Ó^æ	Ô@eeaa}}^	OHĤ ÁÕ¦ ÈHÎ	V^] ã&æ
Í	ΤÎ	ÞJ	ÞFF			Ô[°{}	Ô[゙{}	V°à^	ŒÍ€€ÃÕ¦ÈÓÈ	Ë V^]ã&æe∣
Î	ΤÏ	ÞF€	ÞFG			Ó^æ	Ó^æ	Ô@ee}}^	O EHÎ ÁÕ ¦ÈHÎ	V^] ã&æ
Ï	ТÏŒ	ÞÍ	ÞFG			OĘ.}ął*	Ó^æ	Ô@ee}}^	O EHÎ ÁÕ ¦ÈHÎ	V^] ã&æ
Ì	ΤÌ	ÞFG	ÞÎ			CĘ,}ą}*	Ó^æ	Ô@eee }^	O⊞ĤÁÕ¦ÈĤ	V^] 38aa

>c]bhi6 ci bXUfmi7 cbX]hjcbg

	R[ā] 0/4Šæaà^	ÝÄŽtBajá	ΫÄጂΈδμμá	ZÁŽEB),á	Ý ÁÜ[dĚŽ ËdĐæåá	ŸÁÜ[dĚŽËdĐæåá	ZÁÜ[deŽĬË-d©asåá
F	ÞF	Ü^æ\$cā[}	Ü^æ\$kaį́}	Ü^æ\$kaį́}	Ü^æ\$ka‡i}	Ü^æ\$ka‡ }	Ü^æ\$ka‡ }
G	ÞH	Ü^æ\$cā[}	Ü^æ\$kaji }	Ü^æ\$kaji }	Ü^æ\$ka‡i}	Ü^æ\$ka‡ }	Ü^æ\$ka‡i}
Н	ÞG						
1	ÞI						
Í	ÞÏ	Ü^æ\$cãi}	Ü^æ\$kaji }	Ü^æ\$kaji}	Ü^æ\$kaji }	Ü^æ\$ka‡i}	Ü^æ\$ka‡i}
Î	ÞÌ	Ü^æ\$cā[}	Ü^æ\$kaį́}	Ü^æ\$kaį́}	Ü^æ\$ka‡i}	Ü^æ\$ka‡ }	Ü^æ\$ka‡i}
Ï	ÞJ	Ü^æ\$cā[}	Ü^æ\$kaį́}	Ü^æ\$kaį́}	Ü^æ\$ka‡i}	Ü^æ\$ka‡ }	Ü^æ\$ka‡i}
Ì	ÞFF	Ü^æ\$cā[}	Ü^æ\$kaji }	Ü^æ\$kaji }	Ü^28864 }	Ü^æ\$cā]}	Ü^æ\$cā]}

A Ya VYf 8 jghf jVi hYX @ UXg f6 @ '%. 8 YUX c UXŁ

	T^{à^¦ÁŠæà^∣	Öãi^&cați}	Ùcæ¦cÁTæt}ãĉå^ŽĐe∰	EÒ}åÁTæt}ãčå^ŽiМÊ2ÈÈ	ÈÙcælo/ç[&ænañ]}ŽeÉÃá	Ò}åÅŠ[&ææã[}ŽdÊÄá
F	ΤΪŒ	Ϋ́	Ë€GF	Ë€GF	€	€
G	TÌ	Ϋ́	ËEGF	Ë€GF	€	€

A Ya VYf 8 jglf jVi hYX @ UXg f6 @7 &. Gbck ``cUXL

	T^{à^¦AŠææà^∣	Öãi^&cãį}	Ùcæ¦oÁTæt³}ãĉå^ŽiÐe∰∰	EÒ}åÁTæt}ãčå^ŽĐo£2ÈÈ	È Ùcælo ÁŠ[&ænañ]}ŽeÉÃá	Ò}åÆŠ[&ææã[}ŽdÉÃá
F	ΤΪŒ	Ϋ́	Ë€ÍH	Ë€ÍH	€	€
G	ΤÌ	Ϋ́	Ë H	Ë€ÍH	€	€

A Ya VYf 5 f YU @cUXg

RĮã; OÁCE	R[ã]c∕ÁÓ	R∣ãic∕Ô	R[ã]c∕Ő	Öãi^&cãji}	Öã⊧dâačdā}}	Tæt*}ãĉå^Ž∙-á
		Þ[ÁÖæsz	eÁqtÁÚ¦ãjoA⊞E			

Ü©Ü00EEHÖÁX^¦•ã[}ÁrÎÈEÈE ÁÁÁÁÁŽT KAÈÈÈÈÈÉ¢&`|æã]}•ãÕ¦æçãĉaÙ&^|ÁQĘ}}ã]*´Ò}c^ÈHåáÁ

Úæ*^ÁH

Úæ*^Á

6Ug]W@UX'7UgYg

	ÓŠÔÁÖ^∙&¦∄jαąį}	Ôæ e^ *[¦^	ÝÁÕ¦æçãcî	ŸÁÕ¦æçãcî	ZÁÕ¦æçãcî	RĮąįc	Ú[ậ]c	Öãadãaĭ ơ∿å	Œl^æÇT^ÈÈÈ	Ùĭ¦æ&∧QÚ⊞
F	Ö^æåÁ{æå	ÖŠ		Ë				G		
G	Ù}[,Å[æå	ÙŠ						G		

@CUX'7 ca V]bUhjcbg

	Ö^∙&¦a]ica[}	Ù[IÈ	ĔÜÖÈ	ΪÜÜ	ĎŠÔ (2008dÌ	ĔĎŠÔ	Øæ&dÌ	₩ĎŠÔ	Øæⅆ	€ĚŠÔ	Øæⅆ	₩ĎŠÔ	ØæådÏ	ĔĎŠÔ	Øæ&dÌ	ĐŠÔ	ØæådÌ	ĐŠÔ	Øæ&dÌ	ŤĎŠÔ	ØæådÌ	ĔĎŠÔ	Øæ&dill
F	Ö^-∤^&ca‡i}ÁF	Ϋ ^•	Ÿ		ÖŠ	F																		
G	Ö^-∤^&ca‡}ÁG	Ϋ́^•	Ÿ		ŠŠ	F																		
Н	Ö^-∤^&ca‡i}ÁH	Ϋ́^•	Ÿ		ÖŠ	F	ŠŠ	F																
	QÓÔÁFÎË	Ϋ́^•	Ÿ		ÖŠ	F																		
Í	QÓÔÁFÎ ËJ	Ϋ́^•	Ÿ		ÖŠ	F	ŠŠ	F	ŠŠÙ	F														
Î	QÓÔÁFÎ ËF€ÈÈ	Ϋ́	Ÿ		ÖŠ	F	ÙŠ	F	ÙŠÞ	F														
Ï	QÓÔÁFÎ ËFFÈÈ	Ÿ^∙	Ÿ		ÖŠ	F	ŠŠ	ËÍ	ŠŠÙ	ËÍ	ÙŠ	ĔÍ	ÙŠÞ	ËÍ										

A Ya VYf 5=G7 % h fl * \$!%\$L 5 G8 GhYY 7 c XY7 \ YWg

	ŠÔ	T^{ à^¦		WÔÁTæ¢	Š[&Žcá	Ù@ælÁ\Ô	Š[&Ž-cá	Öã	Ú}&-Ð{ÁŽ:a	áÚ}dÐ[{ÁŽia	ăT}^^Ð[{È	⊞T}::Ð{È	ËÔà	Ò`}
F	F	TF	PÙÙI ¢I ¢I	Ì Ì£	F€ÈÏÏ	È€€G	F€ËÌJ	^	ÍÏĖÌÌ	JŒËGÎ	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà
G	F	TG	PÙÙI ¢I ¢I	È€JH	F€ÈÏÏ	Ì€€I	F€ËÌJ	^	ÍÏĖÌÌ	JŒÎĞÎ	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà
Н	F	TF€	ÔJ¢FHÈÈ	È€GÎ	€	Ì€€Ï	€	^	ÎÌÈF	ÌIÈH	GËÍ	GGĒĽHÍ	FËG	PFËFà
1	F	ТÍ	ÔJ¢FHÈÈ	ÈEIÍ	€	È€FG	€	^	ÎÌÈF	ÌIÈH	GËÍ	GGĒĽHÍ	FË€	PFËFà
Í	F	ТÎ	PÙÙI ¢I ¢I	ÈHJ	F€ÈÏÏ	Ì€€Î	F€ËÌJ	^	ÍÏÈÌÌ	JŒÈGÎ	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà
Î	F	ΤÏ	PÙÙÎ ¢I ¢I	È€€€	€	Ì€FÍ	€	^	ÌJÈFJ	JŒĨJÍ	FFĚÌÏ	FÍÈHGH	FË	PFËFà
Ï	F	ΤΪŒ	ÔJ¢FHÈÈ	ÈFI	IÈ	Ì€FÎ	ÌĚ	^	GÍ È Ì G	ÌIÈH	GËÍ	FÌÈFGH	FÈFHÎ	PFËFà
ì	F	ТÌ	ÔJ¢FHÈÈ	ÈF€I	ΪËΪ	Ì€FI	€	^	ÏÊ€H	ÌIÈH	GËÍ	J₿€Ì	FÈFĤ	PFËFà
J	G	TF	PÙÙI ¢I ¢I	È€€€	€	È€€€	€	^	ÍÏÈÌÌ	JŒÈGÎ	F€ËÎÍ	F€ËÎÍ	F	PFËFà
F€	G	ΤG	PÙÙI ¢I ¢I	È€€€	€	È€€€	€	^	ÍÏÈÌÌ]0∄ đ	F€ËÎÍ	F€ËÎÍ	F	PFËFà
FF	G	TF€	ÔJ¢FHÈÈ	È€€€	€	È€€€	€	^	ÎÌÈF	ÌIÈH	GËÍ	GFÈÌÌÏ	F	PFËFà
FG	G	ТÍ	ÔJ¢FHÈÈ	È€€€	€	È€€€	€	^	ÎÌÈF	ÌIÈH	GËÍ	GFÈÌÌÏ	F	PFËFà
FH	G	ΤÎ	PÙÙI ¢I ¢I	È€€€	€	È€€€	€	^	ÍÏÈÌÌ	JŒÌGÎ	F€ËÎÍ	F€ËÎÍ	F	PFËFà
FI	G	ΤÏ	PÙÙÎ ¢I ¢I	È€€€	€	È€€€	€	^	ÌJÈFJ	JŒĨJÍ	FFĚÌÏ	FÍÈHCH	F	PFËFà
FÍ	G	ΤΪŒ	ÔJ¢FHÈÈ	È€€€	€	È€€€	€	^	GÍ È Ì G	ÌIÈH	GËÍ	FÍÈIÌ	F	PFËFà
FÎ	G	ТÌ	ÔJ¢FHÈÈ	È€€€	€	È€€€	€	^	ÏÊ€H	ÌIÈH	GËÍ	ÌËFJ	F	PFËFà
FΪ	Η	ΤF	PÙÙI ¢I ¢I	È	F€ÈÏÏ	È€€G	F€ĔÌJ	^	ÍÏÈÌÌ]0∄ đ	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà
FÌ	Η	ΤG	PÙÙI ¢I ¢I	È€JH	F€ÈÏÏ	Ì€€I	F€ĔÌJ	^	ÍÏÈÌÌ]ŒÌ Ĝ	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà
FJ	Η	T F€	ÔJ¢FHÈÈ	Ì€GÎ	€	Ì€€Ï	€	^	ÎÌÈF	ÌIÈH	GĒĽÍ	GGEÌHÍ	FËG	PFËFà
G€	H	ТÍ	ÔJ¢FHÈÈ	ÈEIÍ	€	È€FG	€	^	ÎÌÈF	ÌIÈH	GËÍ	GGĒĽHÍ	FË€	PFËFà
GF	H	ТÎ	PÙÙI ¢I ¢I	ÈHJ	F€ÈÏÏ	Ì€€Î	F€ËÌJ	^	ÍÏÈÌÌ	JŒÈGÎ	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà
GG	Η	ΤÏ	PÙÙÎ ¢I ¢I	È€€	€	Ì€FÍ	€	^	ÌJÈFJ	JŒĨJÍ	FFĚÌÏ	FÍÈHGH	FË	PFËFà
GH	H	ΤΪŒ	ÔJ¢FHÈÈ	È€FÏ	IÈ	Ì€FÎ	ÌĚ	^	GÍÈCÌG	ÌIÈH	GËÍ	FÌÈFGH	FÈFHÎ	PFËFà
G	Η	ТÌ	ÔJ¢FHÈÈ	ÈF€I	ΪËΪ	Ì€FI	€	^	ÏÊ€H	ÌIÈH	GËÍ	J₿€Ì	FÈFĤ	PFËFà
GÍ	1	TF	PÙÙI ¢I ¢I	ÈÉÍÍ	F€ÈÏÏ	È€€G	F€ŤÌJ	^	ÍÏÈÌÌ	JŒÈGÎ	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà
Ĝ	1	ΤG	PÙÙI ¢I ¢I	È€JH	F€ÈÏÏ	Ì€€I	F€ËÌJ	^	ÍÏÈÌÌ	JŒÌGÎ	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà
GÏ	1	TF€	ÔJ¢FHÈÈ	È€GÎ	€	Ì€€Ï	€	^	ÎÌÈF	ÌIÈH	GËÍ	GGĒĽHÍ	FËG	PFËFà
Ĝ		ТÍ	ÔJ¢FHÈÈ	ÈEIÍ	€	È€FG	€	^	ÎÌÈF	ÌIÈH	GËÍ	GGEĨHÍ	FË€	PFËFà
GJ		ΤÎ	PÙÙI ¢I ¢I	ÈHU	F€ÈÏÏ	Ì€€Î	F€ĔÌJ	^	ÍÏÈÌÌ	JŒÌGÎ	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà
H€	1	ΤÏ	PÙÙ΢I¢I	ÈE€€	€	Ì€FÍ	€	^	ÌJÈFJ	JŒĨJÍ	FFĚÌÏ	FÍÈHCH	FË	PFË∄à
HF	I	ΤΪŒ	ÔJ¢FHÈÈ	Ì€FÏ	IÈÍ	Ì€FÎ	ÌĚ	^	GÍÈCÌG	ÌIÈH	GËÍ	FÌÈFGH	FÈFHÎ	PFËFà
HG	1	TÌ	ÔJ¢FHÈÈ	ÈE€I	ΪĖ̈́Í	Ì€FI	€	^	ÏÊ€H	ÌIÈH	GËÍ	JÐ́€Ì	FÈĤ	PFËFà
HH	Í	TF	PÙÙI ¢I ¢I	ÈÍÍ	F€ÈÏÏ	È€€G	F€ŤÌJ	^	ÍÏÈÌÌ	lŒj₫	F€ËÎÍ	F€ËÎÍ	FÊIH	PFËFà

Ü©Ü00EEHÖÁX^¦•ã[}ÁrÎÈEÈE ÁÁÁÁÁŽT KAÈÈÈÈÈÉ¢&`|æã]}•ãÕ¦æçãĉaÙ&^|ÁQĘ}}ã]*´Ò}c^ÈHåáÁ

A Ya VYf 5=G7 % h fl * \$!%\$L 5 G8 GhYY 7 c XY 7 \ YW g fl7 c bhjbi YXL

	ŠÔ	T^{ à^¦	Ù@a≱^	WÔÁTæ¢	ŠĮ &Žcá	Ù@æ¦ÁNÔ	ŠĮ &Žcá	Öã	Ú}&-⊒0{ÁŽ:	áÚ}dÐ[{ÁŽi;	áT}^^Ð{{[⊞;::Ð[{	₩ Ôà	Ò˘}
H	Í	ΤG	PÙÙI ¢I ¢I	È€JH	F€ÈÏÏ	Ì€€I	F€ŤÌJ	^	ÍÏÈÌÌ	JŒÌĞÎ	F€ËÎÍ	F€ËÎÍ	FÊI⊦	PFËrà
HÍ	Í	T F€	ÔJ¢FHÈÈ	È€GÎ	€	Ì€€Ï	€	^	ÎÌÈF	ÌIÈH	GËÍ	GGEÏHÍ	FËG	PFËFà
HÎ	Í	ТÍ	ÔJ¢FHÈÈ	ÈEIÍ	€	È€FG	€	^	ÎÌÈF	ÌIÈH	GËÍ	GGEÏHÍ	FË€	PFËFà
ΗÏ	Í	ΤÎ	PÙÙI ¢I ¢I	ÈHU	F€ÈÏÏ	È€€Î	F€ĔÌJ	^	ÍÏÈÌÌ	ŊŒĴŒĴ	F€ËÎÍ	F€ËÎÍ	FÊI⊦	PFËFà
HÌ	Í	ΤÏ	PÙÙÎ ¢I ¢I	ÈE€€	€	È€FÍ	€	^	ÌJÈFJ	JŒĨJÍ	FFĔÌÏ	FÍÈHGH	I FË	PFËFà
HJ	Í	ΤΪŒ	ÔJ¢FHÈÈ	È€FÏ	IÈÍ	È€FÎ	ÌĚ	^	GÍÈCÌG	ÌIÈH	GËÍ	FÌÈFGH	∣FÈFHÎ	PFËFà
∣€	Í	ΤÌ	ÔJ¢FHÈÈ	ÈE€I	ΪĔĹ	È€FI	€	^	ÏÈ€H	ÌIÈH	GËÍ	JÈ€	FÈFĤ	PFËFà
IF	Î	TF	PÙÙI ¢I ¢I	ÈGÏ	F€ÈÏÏ	Ì€€Í	F€ĔÌJ	^	ÍÏÈÌÌ	ŊŒĴŒĴ	F€ËÎÍ	F€ËÎÍ	FÊI⊦	PFËFà
IG	Î	ΤG	PÙÙI ¢I ¢I	ÈG	F€ÈÏÏ	È€€J	F€ĔÌJ	^	ÍÏÈÌÌ	JŒÌGÎ	F€ËÎÍ	F€ËÎÍ	FÊI⊦	PFËFà
ΙH	Î	TF€	ÔJ¢FHÈÈ	È€ÎG	€	È€FÍ	€	^	ÎÌÈF	ÌIÈH	GËÍ	GGËĽHÍ	FÊÌÍ	PFËFà
11	Î	ΤÍ	ÔJ¢FHÈÈ	ÈE€J	€	È€GÏ	€	^	ÎÌÈF	ÌIÈH	GËÍ	GOËĽHÍ	FÊÌF	PFËFà
ΙÍ	Î	ΤÎ	PÙÙI ¢I ¢I	ÈlI€	F€ÈÏÏ	È€FI	F€ĔÌJ	•	ÍÏÈÌÌ	ŊŒÌĞÎ	F€ËÎÍ	F€ËÎÍ	FÊI⊦	PFËFà
ΙÎ	Î	ΤÏ	PÙÙÎ ¢I ¢I	ÈGII	€	ÈEHI	€	^	ÌJÈFJ	JŒĨJÍ	FFĚÌÏ	FÍÈHGH	∣FÊÌ⊦	PFËFà
ΠÏ	Î	ΤΪŒ	ÔJ¢FHÈÈ	È	IÈÍ	È€IF	ÌĚ	^	GÍÈCÌG	ÌIÈH	GËÍ	FÌÈFGH	FÈFHÎ	PFËFà
- LÌ	Î	ΤÌ	ÔJ¢FHÈÈ	ÈĜÍ	ΪËΊ	È€H	€	^	ÏÈ€H	ÌIÈH	GËÍ	J₿€	FÈFHÎ	PFËFà
IJ	Ï	TF	PÙÙI ¢I ¢I	ÈE€J	F€ÈÏÏ	Ì€€I	F€ĔÌJ	^	ÍÏÈÌÌ	ŊŒÌĞÎ	F€ËÎÍ	F€ËÎÍ	FÊI⊦	PFËFà
Í€	Ï	ΤG	PÙÙI ¢I ¢I	ÈJF	F€ÈÏÏ	Ì€€Ì	F€ĔÌJ	^	ÍÏÈÌÌ	ŊŒÌĞ	F€ËÎÍ	F€ËÎÍ	FÊI⊦	PFËFà
ÍF	Ï	TF€	ÔJ¢FHÈÈ	È€ÍH	€	È€FH	€	`	ÎÌÈF	ÌIÈH	GËÍ	GOEÏHÍ	FÊJ	PFËFà
ÍG	Ï	ΤÍ	ÔJ¢FHÈÈ	È€JH	€	È€GH	€	^	ÎÌÈIF	ÌIÈH	GËÍ	GOEÏHÍ	FÊÌI	PFËFà
ÍΗ	Ï	ΤÎ	PÙÙI ¢I ¢I	ÈGJ€	F€ÈÏÏ	È€FG	F€ĔÌJ	^	ÍÏÈÌÌ	ŊŒÌĞÎ	F€ËÎÍ	F€ËÎÍ	FÊI⊦	PFËFà
ÍI	Ï	ΤÏ	PÙÙÎ ¢I ¢I	ÈG€Ì	€	È€GJ	€	^	ÌJÈFJ	JŒĨJÍ	FFĔÌÏ	FÍÈHGH	FÊÌÍ	PFËFà
ÍÍ	Ï	ΤΪŒ	ÔJ¢FHÈÈ	Ì€HÏ	IÈÍ	Ì€HÍ	ÌĚ	^	GÍÈCÌG	ÌIÈH	GËÍ	FÌÈFGH	FÈFHÎ	PFËFà
ĺÎ	Ï	ΤÌ	ÔJ¢FHÈ	ÈGÍ	ΪĖΪ	È€GJ	€	^	ÏÈ€H	ÌIÈH	GËÍ	JÈ€Ì	FÈĤ	PFËrà

ÜQÜQEEHÖÁX^¦•ã[}ÁrÎÈEÈE ÁÁÁÁÁÄZT KAÈÈÈÈÈÉÉÁÁÁÁ

Úæ*^Á

QUANTUM CONSULTING ENGINEERS Lundin Residence 18689101 01-03-19 project date project no. 1511 THIRD AVENUE SUITE 323 Qins G-8 SEATTLE, WA 98101 designer sheet TEL 206.957.3900 C-79 Ymee Lundin Sandro David FAX 206.957.3901 www.quantumcel.com client checked by

Wind Loads - Components and Cladding

ASCE 7-10 Chapter 30 - Part 4 Enclosed Buildings With h<160 FT (Simplified)

Wind Loads - Components and Cladding

ASCE 7-10 Chapter 30 - Part 4 Enclosed Buildings With h<160 FT (Simplified)

	Quantum Consulting Engineers LLC	Project:	David & Jaymee	Date: 1/7/19	Job No:		
	1511 Third Avenue, Suite 323			Designer:	Sheet:	2	
	Seattle, WA 98101	Client:		Checked By:			
-			0.04				_

Wood Stud Wall Design

Per IBC 20	15 & NDS	2015								
	Structure	Lundin Dee	idence							
V	Vall Line	Unper floor	- arid D							
v	Van Eine.		grid D							
Wall Confi	guration									
Wall H	leight (ft):	14.50			Stud Sp	acing (in):	16			
Ś	Stud Size:	2x6		5	Stud Species	s & Grade:	HF #	#2		
Bot.	Plate Th.:	2x		Bot. F	Plate Species	& Grade:	HF #	#2		
					•					
	·	Elec	ulle Le			1/400			100101	
wall Fir	nisn Type:	FIE		Defiect	tion Criteria:	L/120	=1.5 IN	per IBC	1604.3.1	
	Does Wal	l Qualify for	Bending Stre	ess Incr	ease per ND)S 3.1.1.1:	Yes			Р
Wall Load	ina									eln,
Axial Load			Out of Plane	Press	ure Load	-	Wall Axia	al Load E	Eccentricity	1
DL (plf):	293		Wind (psf):	40.8	Strength		n (in):	1.7	5	
LL (plf):	0		EQ (psf):	5	Strength		e (in):	1.0	0	
SL (plf):	488		Sds:	0.94						
Stud Prop	erties									
b (in).	1 50	E (psi) [.]	1300000		per NDS T	able 4A	F _b (psi):	850	per NF)S Table 4A
d (in):	5.50	E' (psi):	1300000		= E*C _M *C₊		F _a (psi):	1300	per NE)S Table 4A
A (in2)	8 25	E_{min} (psi):	470000		ner NDS Ta	able 4A	· C (F - 7		P - · · -	
S (in ³).	7.56	E' _{min} (psi):	470000		$= E_{min} * C_M * ($	2				
L (in ⁴).	20.80	- 11111 (1).	110000							
. ().	_0.00									
C _P :	L _e (ft):	14.13	stud height			C _F :	1.30	per l	NDS Table 4A	
	L _e /d:	30.82				C _M :	1.00	per l	NDS 4.3.3	
	F _{cE} (psi):	407	= 0.822*E' _{min}	₁/(L _e /d)²	2	C _t :	1.00	per l	NDS 4.3.4	
	C:	0.8	per NDS 3.7	.1.5		C _F :	1.10	per l	NDS Table 4A	
Bot Plate	Propertie	s								
2001100	b (in):	1.50				-				
	. /									
F _c ⊥ (psi):	405	per NDS Ta	able 4A		F' _c ⊥ (psi):	506	$= F_{c^{\perp}} C_{M}$	*C _t *C _b		
C _b :	1.25	per NDS 3.	10.4		P _{all} (lb):	4177	= F' _c *A			

Wood Stud Wall Design Per IBC 2015 & NDS 2015

Structure: Lundin Residence Wall Line: Upper floor - grid D

Check Wall Axial and Flexural Capacities for Load Cases per IBC 1605.3.1

 $f_c = P_{axial}/A$ $F'_{c} = F_{c}^{*}C_{D}^{*}C_{M}^{*}C_{t}^{*}C_{F}^{*}C_{P}$

 $f_b = M_{tot}/S$ $F'_{b} = F_{b}^{*}C_{D}^{*}C_{M}^{*}C_{t}^{*}C_{F}^{*}C_{r}$

P _{Axial} (lb)	Bot. Plate P _{all} Status	f _c (psi)	C _D : NDS Table 2.3.2	C _P	F' _c (psi)	C _r : NDS 4.3.9	M _{tot} (Ib-ft)	f _b (psi)	F' _b (psi)	Interaction per NDS 3.9.2	Deflectio n (in)	Wall Status
Load Case	: D + L											
391	<= Pall: OK	47	1.00	0.27	379	1.15	33	52	1271	0.06	0.03	OK
Load Case	: D + S											
1041	<= Pall: OK	126	1.15	0.23	383	1.15	87	138	1461	0.24	0.07	OK
Load Case	: D + 0.75(L	+ S)										
879	<= Pall: OK	107	1.15	0.23	383	1.15	73	116	1461	0.18	0.06	OK
Load Case	: D + 0.6W											
391	<= Pall: OK	47	1.60	0.17	391	1.35	847	1343	2387	0.65	0.78	OK
Load Case	: D + 0.75(L	+ S + 0.6W)										
879	<= Pall: OK	107	1.60	0.17	391	1.15	684	1085	2033	0.80	0.63	OK
Load Case	: (1.0 + 0.14	Sds) D + 0.7	E									
442	<= Pall: OK	54	1.60	0.17	391	1.15	153	243	2033	0.16	0.18	OK
Load Case	: (1.0 + 0.14	Sds) D + 0.7	5(L + S + 0.7E	E)								
994	<= Pall: OK	121	1.60	0.17	391	1.15	170	270	2033	0.28	0.18	OK

Wall: **2x6** is acceptable @ 16 in. o.c.

	Quantum Consulting Engineers LLC	Project:	Lundin Residence	Date:	1/9/19	Job No:	18689.01
	1511 Third Avenue, Suite 323			Designer:	Qing	Sheet:	2
	Seattle, WA 98101	Client:	David & Jaymee	Checked By:	Sandro		

Wood Stud Wall Design

Per IBC 20	15 & NDS	2015								
	Structure	Lundin Res	idence							
V	Vall Line:	Main floor -	grid E							
			-							
Wall Confi	guration	44.00			04.14.0		40			
vvali F		11.00		c	Stud Spacia	acing (in):		# 0		
		2x0				s & Grade.		+2		
Bot.	Plate Th.:	2x		Bot. P	late Species	s & Grade:	HF 7	#2		
Wall Fir	nish Type:	Fle	xible	Deflect	tion Criteria:	L/120	=1.1 in	per IBC	1604.3.1	
	Does Wal	l Qualify for	Bending Stre	ess Incr	ease per ND	DS 3.1.1.1:	Yes			
										eln
Wall Load	ing		Out of Plane	Drassi	ureload	-	Mall Avia	l Load E	iccentricity	<u>1</u> 1
DL (plf):	430		Wind (psf):	43.7	Strength		n (in):	1.7	5	
LL (plf):	300		EQ (psf):	5	Strength		e (in):	1.0	0	
SL (plf):	0		Sds:	0.94	Ũ					
Stud Prop	erties									
b (in):	1.50	E (psi):	1300000		per NDS Ta	able 4A	F _b (psi):	850	per ND	S Table 4A
d (in):	5.50	E' (psi):	1300000		= E*C _м *C _t		F _c (psi):	1300	per ND	S Table 4A
A (in ²):	8.25	E _{min} (psi):	470000		per NDS Ta	able 4A				
S (in ³):	7.56	E' _{min} (psi):	470000		= E _{min} *C _M *C	Ct				
I (in ⁴):	20.80									
C .	1 (4).	10.62	atud baight			C.	1.20	nor		
Up.	L₀/d [.]	23.18	stud neight			C _F .	1.30	per N		
	F _{cF} (psi):	719	= 0.822*E'	_/(L_/d) ²	2	C _t :	1.00	per N	NDS 4.3.4	
	C:	0.8	per NDS 3.7	.1.5 ⁽		C _F :	1.10	per N	NDS Table 4A	
Bot Plato	Proportio	e								
	b (in):	1.50				-				
	~ /									
F _c ⊥ (psi):	405	per NDS Ta	able 4A		F' _c ⊥ (psi):	506	$= F_{c^{\perp}} C_{M}$	*C _t *C _b		
C _b :	1.25	per NDS 3.	10.4		P _{all} (lb):	4177	= F' _c *A			

Wood Stud Wall Design Per IBC 2015 & NDS 2015

Structure: Lundin Residence Wall Line: Main floor - grid E

Check Wall Axial and Flexural Capacities for Load Cases per IBC 1605.3.1

 $f_c = P_{axial}/A$ $F'_{c} = F_{c}^{*}C_{D}^{*}C_{M}^{*}C_{t}^{*}C_{F}^{*}C_{P}$

 $f_b = M_{tot}/S$ $F'_{b} = F_{b}^{*}C_{D}^{*}C_{M}^{*}C_{t}^{*}C_{F}^{*}C_{r}$

P _{Axial} (lb)	Bot. Plate P _{all} Status	f _c (psi)	C _D : NDS Table 2.3.2	C _P	F' _c (psi)	C _r : NDS 4.3.9	M _{tot} (Ib-ft)	f _b (psi)	F' _b (psi)	Interaction per NDS 3.9.2	Deflectio n (in)	Wall Status
Load Case	: D + L											
973	<= Pall: OK	118	1.00	0.44	623	1.15	81	129	1271	0.16	0.04	OK
Load Case	: D + S											
573	<= Pall: OK	69	1.15	0.39	638	1.15	48	76	1461	0.07	0.02	OK
Load Case	: D + 0.75(L	+ S)										
873	<= Pall: OK	106	1.15	0.39	638	1.15	73	115	1461	0.12	0.03	OK
Load Case	: D + 0.6W											
573	<= Pall: OK	69	1.60	0.29	665	1.35	541	859	2387	0.41	0.28	OK
Load Case	<u>: D + 0.75(L</u>	+ S + 0.6W)							-			
873	<= Pall: OK	106	1.60	0.29	665	1.15	443	703	2033	0.43	0.23	OK
Load Case	: (1.0 + 0.14	Sds) D + 0.7	E									
649	<= Pall: OK	79	1.60	0.29	665	1.15	120	190	2033	0.12	0.07	OK
Load Case	: (1.0 + 0.14	Sds) D + 0.7	5(L + S + 0.7E	=)								
988	<= Pall: OK	120	1.60	0.29	665	1.15	132	209	2033	0.16	0.08	OK

Wall: **2x6** is acceptable @ 16 in. o.c.

	Quantum Consulting Engineers LLC	Project:	Lundin Residence	Date:	1/7/19	Job No:	18689.01
	1511 Third Avenue, Suite 323			Designer:	Qing	Sheet:	2
	Seattle, WA 98101	Client:	David & Jaymee	Checked By:	Sandro		

LUNDIN RESIDENCE

4041 West Mercer Way Mercer Island, WA 98040

Quantum Job Number: 18689.01

FOUNDATION CALCULATIONS

1511 THIRD AVENUE	Lundin residence	12-20-18	project no.
SUITE 323		date	F -1
SEATTLE, WA 98101 TEL 206.957.3900 FAX 206.957.3901 www.quantumce.com	David D-Jarmee Lundin	designer Sandro checked by	sheet

$$\frac{187}{187} \frac{6''}{6''} Conc. Wall$$

$$Mu \leq 4 Mn$$

$$Where \geq 4 = 0.90$$

$$Mn = A_{0}, f_{0} \cdot (d - 9/2) \approx A_{0}, f_{0} \cdot 0.9d$$

$$d = 4^{4}$$

$$\Rightarrow Mn = \frac{Mu}{4} = \frac{8170 \#}{0.89} = 9078 \#^{11}$$

$$A_{5} = \frac{9078 \#^{11}}{f_{5}} = \frac{108.94 K''}{60 KSI \times 0.9 \times 4^{4}} = 0.48 in^{2}$$

$$\frac{W1 \#5 \ rebar}{6.48 in^{2}} (A_{5} = 0.31in^{2})$$

$$SPa Cin 0 \leq \frac{0.31in^{2}}{0.48 in^{2}} \times 12'' = 7.8''$$

$$C use 8''9L$$

$$Check Shear Cafacility$$

$$V_{n} = 2\sqrt{3}cooresi \times 12'' \times 8'' \times 1.0$$

$$= 10516 \#$$

$$\Psi = \frac{8'' Concrete}{16} Wall WI$$

$$\#5 \in 8''7L \ Horizontal,$$

$$\#4 \in 12''7L \ Vertical$$

QUANTUM | CONSULTING ENGINEERS _Lundin project 18689.01 project no. 12-20-18 date residence 1511 THIRD AVENUE SUITE 323 SEATTLE, WA 98101 TEL 206.957.3900 FAX 206.957.3901 Qing F-2 designer sheet Lundin David client Sandro checked by D-4 JAY Mee www.quantumce.com

			Perimeter	Footing							
Quantum Consulting E Lundin Residence 4041 West Mercer Way Mercer Island, Wa 9804	ingineers 0										
Quantum Job # 18689.0	4		Blue Cells Indicate Green Cells Indica	Inputs!! te Inputs!!							
Loads on Footing											
	Trib. Width ft	q ₀∟ øsf	q s∟ ⊳Sf	q ∟∟ ⊅sf	Width <i>in</i>	Thickness in	Cocn. Weight	Total DL	Total SL	Total LL plf	
Roof Wall	13.2 אמ	18	30	0				238 203	396	0	
Steel Awning	6	12	0	20				72	0	120	
Main Floor	8	36	0	40				279	0	310	
Lower Floor	0	36	0	40	0	2	160	90	0	0	
Concrete Stem Wall					10	04	150	100			
Concrete Footing					81.	00	Total Loads	1001	306	430	
	Allowable Soil E	Bearing B _{SOIL} (psf) =	3000				Total Loads	1241	396	430	
ASD Combinations:	P (plf)	B _{SOL} (psf)	Footing Size (in)								
D + C D + S	1241 1671 1637	3000	6.7 6.5								
				-							
	Keq	d. Footing size (in)	1.4								
	User Select	ed Footing Size (in)	18								
Footing Reinforcing		fy =	40	(ksi)	f'c =	2500	psi				
LRFD Combinations:	P _u (plf)	Footing Width (in)	Soil Pressure (psf)	Can'ted L (in)	M _u (k-in)	M _n (k-in)	Footing Depth (in)	d (in)	As (in ²)	Min. As (in ²) F	Req. As (in ²)
1.2D + 1.6L + 0.5S	2375	18 18	1584	5	1.65	1.34 1.83	8	4.75 4.75	0.0107	0.1026	0.1026
1.2D + 1.6S + 0.5L 1.2D + 0.5L + 0.5S	2338 1902	18 18	1268	თ თ	1.62	1.80 1.47	∞ œ	4.75	0.0105	0.1026	0.1026
1.2D + 0.5L + 0.2S	1784	18	1189	S	1.24	1.38	8	4.75	0.0080	0.1026	0.1026
Longitudinal Steel	Steel Ratio p 0.0020	Width (in) 18	Thickness (in) 8	Req. As (in ²) 0.288	User S Reinf (2) - #4 L	elected orcing ongitudinal					
		3 (light Weigh	t Concrete Eactor) =	1		1.0 fc 0.85 foi	r normal weight con sand light weight co	crete			
-											
LRFD Combinations:	a (psf) 1158	Effective Length (in)	Effective Area (ft^2)	V_u (lb)	ØV _u (lb)	Result					
1.2D + 1.6L + 0.5S	1584	0.25	0.02	33	4275	è è					
1.2D + 1.6S + 0.5L	1559	0.25	0.02	32	4275	e e					
1.2D + 0.5L + 0.5S 1.2D + 0.5L + 0.2S	1268 1189	0.25	0.02	26 25	4275 4275	ŠŠ					
		18"w.x8"d. ((2)-#4 cor	Continuous Fo 1t. Longitudina	oting w/ al Bar							
		(1)									

#4 Rebar (in^2)

Rebar Spacing (in)

User Selected Spacing (in) #4 @ 16" o.c. #4 @ 16" o.c. #4 @ 16" o.c.

23.4 23.4 23.4 23.4

0.2

23.4

#4 @ 16" o.0

							ooting w/ al Bar	ontinuous Fo Longitudina	18"w.x12"d. C (3)#4 cont		
					<u> </u>	7875 7875	-419 -419	-0.21 -0.21	-2.50 -2.50	2009 2009	1.2D + 0.5L + 0.5S 1.2D + 0.5L + 0.2S
					è è	7875	-419	-0.21	-2.50	2009	1.2D + 1.6S + 0.5L
					ŞŞ	7875	-247	-0.21	-2.50	1184	1.4D
					Result	$\mathbf{OV}_{u}(\mathbf{lb})$	V _u (lb)	Effective Area (ft^2)	Effective Length (in)	σ (psf)	LRFD Combinations:
			ete crete .ete	normal weight concre and light weight conc all light weight concr	1.0 for r 0.85 for sa 0.75 for a		1.00	Concrete Factor) =	λ (Light Weight	S	Check Footing Thickne
					elected arcing ngitudinal	User Se Reinfc (3) - #4 Lo	Req. As (in ²) 0.432	Thickness (in) 12	Width (in) 18	Steel Ratio p 0.0020	Longitudinal Steel
	0.189	0.0115	8.75	12	3.63	3.27	6.25	2009	18	3014	1.2D + 0.5L + 0.2S
	0.189	0.0115	8.75	12	3.63	3.21	6.25	5005 5007	100	3014	1.2D + 1.6S + 0.5L
0,0,9	0.189	0.0241	8.75	12	7.59	6.83	6.25	4196	18	6294	1.2D + 1.6L + 0.5S
Req. 4	Min. As (in ²) 0.189	As (in ²) /	d (in) ,	ooting Depth (in) 12	M _n (k-in) Fc	M _u (k-in)	Can'ted L (in) 6.25	oil Pressure (psf) 1184	Footing Width (in) S	P_(plf)	LRFD Combinations: 1.4D
				<u>2</u> .	2500 ps	f'c =	(ksi)	40	fy =		Footing Reinforcing
							_	18	ed Footing Size (in)	User Selecte	
							_	17.0	d. Footing Size (in)	Req'	
								14.0	JUUU	000	
								5.1 5.1	3000 3000 3000	1269 4251 1269	D + 0.751 + 0.759 D + L D + S
								Footing Size (in)	B _{SOIL} (psf)	P (plf)	ASD Combinations:
	2982	0	1269	Total Loads				3000	earing B _{solL} (psf) =	Allowable Soil B	
L			C77	190	71	0					Concrete Footing
			0	150	0	0					Concrete Stem Wall
. 1	2382	0	0				1985	0	0	1.2	Vehicle
	0	00	0940				40	00	36 0	0 0	Lower Floor
	200	>	999 999				40	5	69	11 1	Wall
	lotal LL plf 0	plf 0	plf	pcf	in	<i>in</i>	q _{LL} psf 0	q _{s∟} 20	q _{bL} psf 18	1 rib. Width ft	Roof
_		2	2		-		1				Loads on Footing
							Inputs!! te Inputs!!	Blue Cells Indicate Green Cells Indica	0 11	1	Quantum Job # 18689.0
										ngineers 0	Quantum Consulting E Lundin Residence 4041 West Mercer Way Mercer Island, WA 9804
						Sarage	oting - (Interior Fo			

t Rebar (in^2)

Rebar Spacing (in) 12.7 12.7

User Selected Spacing (in) #4 @ 12" o.c. #4 @ 12" o.c.

0. 2

0.2

12.1

#4 @ 12" o.

	LRFD Combinations: σ (psf 1.4D 1196 1.2D + 1.6L + 0.5S 1716 1.2D + 1.6S + 0.5L 1786 1.2D + 0.5L + 0.5S 1364 1.2D + 0.5L + 0.2S 1257	Check Footing Thickness	Longitudinal Steel Steel Rat	LRFD Combinations: P _u (pff 1.4D 1794 1.2D + 1.6L + 0.5S 2575 1.2D + 1.6S + 0.5L 2637 1.2D + 0.5L + 0.5S 2047 1.2D + 0.5L + 0.2S 1885	Liser S		ASD Combinations: P (pfi) D 1282 D + L 1762 D + S 1819 D + 0.75L + 0.75S 2044	Allowable	Concrete Footing	Concrete Stem Wall	Main Floor 12	Wall 27.5	Trib. Wi	Quantum Job # 18689.01 Loads on Footing	Quantum Consulting Engineers Lundin Residence 4041 West Mercer Way Mercer Island, WA 98040	
18"w.x12"d. ((3)-#4 con) Effective Length (in) -2.50 -2.50 -2.50 -2.50 -2.50 -2.50	λ (Light Weight	D Width (in)) Footing Width (in) 18 18 18 18 18	selected Footing Size (in) fy =	Req'd. Footing Size (in)) B _{solt} (psf) 3000 3000 3000 3000 3000	Soil Bearing B _{SOIL} (psf) =		30	36	11	dth q _{bL}			
Continuous Footi t. Longitudinal B	Effective Area (ft^2)	Concrete Factor) =	Thickness (in) Req. 12	Soil Pressure (psf) Can 1196 1716 1758 1364 1257	18 40 (ksi)	8.2	Footing Size (in) 5.1 7.0 7.3 8.2	3000		-	000	<u>з</u>	q sL psf	Blue Cells Indicate Inpu Green Cells Indicate Inj		i ypicai interi
ng w/ ar	V _u (lb) ØV _u (lb) F -249 7875 -358 7875 -386 7875 -284 7875 -284 7875 -282 7875	1.00	As (in ²) User Seler As (in ²) Reinforci 0.432 (3) - #4 Long	Mu (k-in) Mu 6.25 2.79 6.25 2.86 6.25 2.22 6.25 2.05	fc =				18	0	40		q _{LL} Width Thi	ats!! outs!!		or Footing
		1.0 for normal weight cor 0.85 for sand light weight c 0.75 for all light weight co	sted ng tudinal	n (k-in) Footing Depth (in) 2.16 3.10 12 3.18 12 2.47 12 2.27 12	2500 psi			Total Loads	12 150	0 150			ckness Cocn. Weight in pcf			
		ncrete norete		d (in) As (in ²) Mi 8.75 0.0069 8.75 0.0099 8.75 0.0101 8.75 0.0072 8.75 0.0072 0.0072 0.0072				1282 537	225		432 0	303 396	Total DL Total SL			
				(in. As (in ²) Reg. As (in ²) 0.189 0.1890 0.1890 0.189 0.1890 0.1890 0.189 0.1890 0.1890 0.189 0.1890 0.1890 0.189 0.1890 0.1890 0.189 0.1890 0.1890				480		c	480		Total LL plf			
) #4 Rebar (in^2) 0.2 0.2 0.2 0.2 0.2 0.2												

Rebar Spacing (in) 12.7 12.7

User Selected Spacing (in) #4 @ 12" o.c. #4 @ 12" o.c.

12.

#4 @ 12" o.

			Interior Sh	ear Wal	l Foot	ing						
Quantum Consulting En Lundin Residence 4041 West Mercer Way Mercer Island, WA 98040	gineers											
Quantum Job # 18689.01			Blue Cells Indicate Green Cells Indicat	Inputs!! te Inputs!!								
Loads on Footing												
	Trib. Width	q _{DL}	¶s∟	qr	Width	Thickness	Cocn. Weight	Total DL	Total SL	Total LL		
Roof	16.5	18	20 30	0	11		per	297	495	0		
Wall	26	11						286				
Terrace	1 0	40	» 0	60				240	, o	360		
I ower Floor	⊃ U	36		40				n g	э с	0200		
Concrete Stem Wall	c	JO	c	5	0	0	150	00	c	c		
Concrete Footing					18	24	150	450				
-	lowable Soil B	earing B _{SOIL} (psf) =	3000				Total Loads	1453	495	560		
ASD Combinations:	P (plf)	B _{SOL} (psf)	Footing Size (in)									
0 + D	1453 2013	3000 3000	5.8 8.1									
D + 0.75L + 0.75S	2244	3000	9.0									
	Req	d. Footing Size (in)	9.0									
	User Selecte	ed Footing Size (in)	18									
Footing Reinforcing		fy =	40	(ksi)	f'c =	2500	os.					
LRFD Combinations:	P _u (plf)	Footing Width (in)	Soil Pressure (psf)	Can'ted L (in)	M _u (k-in)	M _n (k-in)	-ooting Depth (in)	d (in)	As (in ²)	Min. As (in ²)	Req. As (in ²)	#4 Rebar (in
1.4D 1.2D + 1.6L + 0.5S	2034 2887	18 18	1356 1925	6.25 6.25	2.21 3.13	2.45 3.48	24 24	20.75	0.0033	0.4482 0.4482	0.4482 0.4482	0.2 0.2
1.2D + 1.6S + 0.5L	2816	18	1877	6.25 6.25	3.06	3.39	24	20.75	0.0045	0.4482	0.4482	0.2
1.2D + 0.5L + 0.2S	2123	18	1415	6.25	2.30	2.56	24	20.75	0.0034	0.4482	0.4482	0.2
Longitudinal Steel	Steel Ratio o	Width (in)	Thickness (in)	Rea As (in ²)	User S Reinf	elected						
	0.0020	18	24	0.864	(8) - #4 Lo	ongitudinal						
Check Footing Thicknes	ő	λ (Light Weight	Concrete Factor) =	1.00		1.0 foi 0.85 for 0.75 fo	r normal weight cor sand light weight c r all light weight co	icrete oncrete ncrete				
I DED Comhinations	a (nsf)	Effective Length (in)	Effective Area (ff/9)	(41)		Doe It						
1.4D	1356	-14.50	-1.21	-1639	18675	Ŗ						
1.2D + 1.6L + 0.5S	1925	-14.50	-1.21	-2326	18675	Ŕ						
1.2D + 1.6S + 0.5L	1877	-14.50	-1.21	-2268	18675	ę						
1.2D + 0.5L + 0.5S 1.2D + 0.5L + 0.2S	1514 1415	-14.50 -14.50	-1.21 -1.21	-1829 -1710	18675	ĕĕ						
		18"w.x24"d. (Continuous Fo	ooting w/								
		(4) -# 4 cont. L	Bottom	ar Top &								

Rebar Spacing (in)

User Selected Spacing (in) #4 @ 12" o.c.

				oting w/ Il Bar	continuous Fc t. Longitudina	24"w.x12"d. C (3)-#4 con		
	_		-					
		ĕ	7875	009 200	0.44	5.25	1578	1.2D + 0.5L + 0.2S
		ę	3207 C / D /	660	0.44	0.2.C	1500	
		Ś	5/8/	200	0.44	5.25	1500	1.2U + 1.6L + 0.5S
		Q	2787	667	0.44	5.25	1825	1.4D
		Result	ØV _u (lb)	V_u (lb)	Effective Area (ft^2)	Effective Length (in)	σ (psf)	LRFD Combinations:
concrete ti concrete concrete	r normal weight c r sand light weigh or all light weight	1.0 fc 0.85 fo 0.75 f	0	1.00	Concrete Factor) =	λ (Light Weight	SS	Check Footing Thickn
	_							
		Selected forcing ongitudinal	User S) Rein (3) - #4 L	Req. As (in ² , 0.576	Thickness (in) 12	Width (in) 24	Steel Ratio p 0.0020	Longitudinal Steel
8.75 0.0454 0.189 0.1890	12	14.31	12.88	14	1578	24	3155	1.2D + 0.5L + 0.2S
8.75 0.0456 0.189 0.1890	12	14.30	12.92	14	1582	24 24	3164	1.2D + 1.5S + 0.5L 1.2D + 0.5L + 0.5S
8.75 0.0462 0.189 0.1890	12	14.55	13.10	14	1604	24	3208	1.2D + 1.6L + 0.5S
8.75 0.0526 0.189 0.1890	12	16.56	14.91	Can ted L (in) 14	1825	24	3651	באדט Combinations: 1.4D
	Footing Dopth (is		M //- :>	Control I (in)		Easting Width (in)		I BED Combinations
	psi	2500	f'c =	(ksi)	40	fy =		Footing Reinforcing
					24	ed Footing Size (in)	User Select	
					10.6	'd. Footing Size (in)	Req	
					10.4 10.6 10.6	3000 3000 3000	2608 2648 2638	D D + L D + S D + 0.75L + 0.75S
					Footing Size (in)	B _{SOL} (psf)	P (plf)	ASD Combinations:
					3000	3earing B _{SOL} (psf) =	Allowable Soil E	
ds 2608 30 40	Total Load							
300	150	12	24					Concrete Footing
2188	150	210	10	-c	¢		c	Concrete Wall
				40	0 0	36	0 0	I ower Floor
				40	o c	36	- a	Upper Floor
				5	•	211	. 6	Wall
				0	30	18	•	Roof
plf plf plf	pcf	in	in	psf	psf	psf	ft	
t Total DL Total SL Total LL	Cocn. Weight	Thickness	Width	a -	Q _{s1}	Qni	Trib. Width	Loads on Footing
				Inputs!! e Inputs!!	Blue Cells Indicate Green Cells Indicat		11	Quantum Job # 18689.(
							:ngineers 0	Quantum Consulting E Lundin Residence 4041 West Mercer Way Mercer Island, Wa 9804
		c ni	ALG	rooung	Perimeter			
				1))				

#4 Rebar (in^2)

Rebar Spacing (in) 12.7 12.7

User Selected Spacing (in) #4 @ 12" o.c. #4 @ 12" o.c.

0.2 0.2 0.2

12.1

#4 @ 12" o.

Spread Footing 1

Project Number: 18689.01 Project Name: Lundin Residence Footing Number: Footing 1 Today's Date: 1/7/2019 Engineer: Qing Huang

Inputs:

Bearing Check:

ASD Factored Load = 12.6 kips	
Required Footing Area = 4.21 sq. ft.	
Actual Footing Area = 6.25 sq. ft.	

Beam Shear Design - X Direction:

Beam Shear Design - Y Direction:

Ø= 0.75	
Vu = 2 kips	
ØVn = 20 kips	ΟΚ

ΟΚ

οκ

ΟΚ

Punching Shear Design:

Ø= 0.75	
Vu = 14 kips	
ØVn = 76 kips	

Flexural Design - X Direction:

Ø= 0.9	
Bar Size = #4	
Number of Bars Provided = 4	
As Minimum = 0.72 sq. in.	
As Provided = 0.80 sq. in.	OK
Mu = 4 ft-kips	
ØMn = 20 ft-kips	OK
Bar Spacing = 8.00 in.	ΟΚ

Flexural Design - Y Direction:

Ø= 0	.9
Bar Size = #	£4
Number of Bars Provided = 4	l -
As Minimum = 0).72 sq. in.
As Provided = 0.).80 sq. in. OK
Mu = 4	ft-kips
ØMn = 2	0 ft-kips OK
Bar Spacing = 8	8.00 in. OK

Spread Footing 2

Project Number: 18689.01 Project Name: Lundin Residence Footing Number: Footing 2 Today's Date: 1/7/2019 Engineer: Qing Huang

Inputs:

Service Dead Load =	5.3 kips
Service Live Load =	5.6 kips
Service Snow Load =	0.0 kips
LRFD Factored Load =	16.3 kips
Allowable Soil Bearing =	3000 psf
Concrete Strength (f'c) =	2500 psi
Column Xc Dimension =	6.00 in.
Column Yc Dimension =	5.50 in.
Footing X Dimension =	2.50 ft.
Footing Y Dimension =	2.50 ft.
Rebar Strength Fy =	40.0 ksi
Footing Thickness (t) =	12.00 in.
Rebar Clear Cover =	3.00 in.
Rebar Effective Depth (d) =	8.75 in.

Bearing Check:

ASD Factored Load = 11.8 kips	
Required Footing Area = 3.92 sq. ft.	
Actual Footing Area = 6.25 sq. ft.	

Beam Shear Design - X Direction:

Ultimate Soil Bearing Stress = 2.61 ksf	
Ø= 0.75	
Vu = 2 kips	
ØVn = 20 kips	

Beam Shear Design - Y Direction:

Ø= 0.75	
Vu = 2 kips	
ØVn = 20 kips	ΟΚ

ΟΚ

οκ

ΟΚ

Punching Shear Design:

Ø= 0.75	
Vu = 13 kips	
ØVn = 76 kips	

Flexural Design - X Direction:

OK
ΟΚ
ΟΚ

Flexural Design - Y Direction:

Ø=	0.9
Bar Size =	#4
Number of Bars Provided =	4
As Minimum =	0.72 sq. in.
As Provided =	0.80 sq. in. OK
Mu =	3 ft-kips
ØMn =	20 ft-kips OK
Bar Spacing =	8.00 in. OK

Spread Footing 3

Project Number: 18689.01 Project Name: Lundin Residence Footing Number: Footing 3 Today's Date: 1/7/2019 Engineer: Qing Huang

Inputs:

Bearing Check:

ASD Factored Load = 8.3 kips	
Required Footing Area = 2.76 sq. ft.	
Actual Footing Area = 4.00 sq. ft.	

Beam Shear Design - X Direction:

2.90 ksf
0.75
0 kips
16 kips

Beam Shear Design - Y Direction:

Ø= 0.75	
Vu = 0 kips	
ØVn = 16 kips	OK

ΟΚ

οκ

οκ

Punching Shear Design:

Ø=	0.75
Vu =	8 kips

ØVn =	72	kips

Flexural Design - X Direction:

Ø=	0.9
Bar Size =	#4
Number of Bars Provided =	3
As Minimum =	0.58 sq. in.
As Provided =	0.60 sq. in. OK
Mu =	2 ft-kips
ØMn =	15 ft-kips OK
Bar Spacing =	9.00 in. OK

Flexural Design - Y Direction:

Ø=	0.9
Bar Size =	#4
Number of Bars Provided =	3
As Minimum =	0.58 sq. in.
As Provided =	0.60 sq. in. OK
Mu =	2 ft-kips
ØMn =	15 ft-kips OK
Bar Spacing =	9.00 in. OK

License : KW-06057394 License To : QUANTUM CONSULTING ENGINEER	Cantilevered Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Criteria	Soil Data	
Retained Height= 7.50 ft AWall height above soil= 0.50 ft ESlope Behind Wall= 0.00 AHeight of Soil over Toe= 0.00 in Water height over heel= 0.0 ft	Illow Soil Bearing = 4,000.0 psf Equivalent Fluid Pressure Method active Heel Pressure = 35.0 psf/ft = = 450.0 psf/ft = = 450.0 psf/ft	
S S F S	Soil Density, Heel=110.00 pcfSoil Density, Toe=110.00 pcfSooting Soil Friction=0.525Soil height to ignore for passive pressure=5.40 in	Restrain
Surcharge Loads	Lateral Load Applied to Stem	Adjacent Footing Load
Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning Axial Load Applied to Stem	Lateral Load=0.0 #/ftHeight to Top=0.00 ftHeight to Bottom=0.00 ft.oad Type=Wind (W) (Service Level)	Adjacent Footing Load=0.0 lbsFooting Width=0.00 ftEccentricity=0.00 inWall to Ftg CL Dist=0.00 ftFooting TypeLine LoadBase Above/Below Soil=0.0 ft
Axial Dead Load = 555.0 lbs Axial Live Load = 44.0 lbs Axial Load Eccentricity = 1.3 in	Wind on Exposed Stem ₌ 0.0 psf (Service Level)	at Back of Wall = 0.011 Poisson's Ratio = 0.300
Earth Pressure Seismic Load		
Multiplier Used = 7.000 (Multiplier used on soil density)	Total Seismic Force = 515.715	Seismic surcharge
Design Summary	Stem Construction Bottor	n
Wall Stability Ratios Overturning = 1.15 Ratio < 1.5 Slab Resists All Sliding !	Design Height Above Ftg ft = 0 Wall Material Above "Ht" = Concr Design Method = LR Thickness = 8	.00 ete FD ASD LRFD .00
Total Bearing Load=2,036 lbsresultant ecc.=17.84 in	Rebar Size = # Rebar Spacing = 10 Rebar Placed at = Cor	5 .00
Soil Pressure @ Toe = 2,877 psf OK Soil Pressure @ Heel = 0 psf OK	Design Data fb/FB + fa/Fa	938
Allowable = 4,000 psf	Total Force @ Section	
ACI Factored @ Toe = 4,028 psf ACI Factored @ Heel = 0 psf	Service Level Ibs = Strength Level Ibs = 2,02	5.6 Seismic load is included, overturning is permitted to
Footing Shear @ Toe = 20.8 psi OK Footing Shear @ Heel = 0.0 psi OK	Service Level ft-# = Strength Level ft-# = 5,70	be taken as 1.1
Allowable = 82.2 psi Sliding Calcs Lateral Sliding Force = 1.650.3 lbs	MomentAllowable = 6,08 ShearActual	3.7
	Service Level psi = Strength Level psi = 4	2.2
	ShearAllowable psi = 8 Anet (Masonry) in2 =	2.2 139.50
	f'm psi = Fs psi =	
Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing	Solid Grouting = Modular Ratio 'n' = Wall Weight psf = 10	0.0
Load FactorsBuilding CodeIBC 2015,ACIDead Load1.200	 Short Term Factor Equiv. Solid Thick. Masonry Block Type Medium 	m Weight
Live Load 1.600 Earth, H 1.600 Wind W 1.000	Masonry Design Method = ASD Concrete Data f'c D-13 psi = 3,00	0.0

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING	Cantilevered	Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Concrete Stem Rebar Area Deta	ails		
Bottom Stem As (based on applied moment) :	Vertical Reinforcing 0.3443 in2/ft	Horizontal Reinforcing	
(4/3) * As :	0.4591 in2/ft	Min Stem T&S Reinf Are	a 1.536 in2
200bd/fy : 200(12)(4)/60000 :	0.16 in2/ft	Min Stem T&S Reinf Are	a per ft of stem Height : 0.192 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing O	ptions :
	===========	One layer of : Two la	avers of :
Required Area :	0.3443 in2/ft	#4@ 12.50 in #4@	25.00 in
Provided Area :	0.372 in2/ft	#5@ 19.38 in #5@	38.75 in
Maximum Area :	0.6503 in2/ft	#6@ 27.50 in #6@	55.00 in
Footing Dimensions & Streng	ths Footing De	sign Results	
Toe Width= 3.2 Heel Width= 0.6 Total Footing Width= 3.5 Footing Thickness= 13.0 Key Width= 0.0 Key Depth= 0.0 Key Distance from Toe= 0.0 f'c = $3,000 \text{ psi}$ Fy = $40,00$ Footing Concrete Density= 150.0 Min. As %= 0.001 Cover @ Top 2.00 @ Btm.=	25 ft Factored Pressur 67 Mu': Upward 60 in Mu': Downward 60 in Mu': Design 60 in Actual 1-Way She 60 in Allow 1-Way She 60 ft Toe Reinforcing 60 pcf Key Reinforcing 78 Other Acceptab 70 no Toe: #4@ 7.2 78 Heel: Not req'd 70 no Key: No key of 70 pcf Key: No key of 70 no in Min footing T& 70 no ft Toe Reinforcing 70 no ft Toe Reinforcing 70 no ft Toe: #4@ 7.2 70 no ft Toe: #4@ 7.2 70 no ft Toe: #4@ 7.2 70 no ft Toe: #4@ 7.2 70 no ft Toe Reinforcing 70 no ft Toe Reinforcing 70 no ft Toe Reinforcing 70 no ft Toe Reinforcing 70 no ft Toe Reinforcing 70 no ft Toe Reinforcing 70 no ft Toe Reinforcing 70 no ft Toe Reinforcing 70 no ft	Toe Her re = 4,028 = 7,918 = = 1,030 = 6,889 ear = 20.80 0.0 ar = 82.16 43.8 = # 5 @ 10.00 in = # 4 @ 18.00 in = # 4 @ 18.00 in = None Spec'd le Sizes & Spacings 11.16 in, #6@ 15 15 d: Mu < phi*5*lambda*sqrt(f	el 0 psf 0 ft-# 0 ft-# 0 ft-# 0 psi 32 psi 6.83 in, #7@ 21.59 in, #8@ 28.43 in, #9@ 35 'c)*Sm 10 in2 28 in2 /ft 0 layers of horizontal bars: @ 17.09 in @ 26 50 in

#6@ 18.80 in

Summary of Overturning & Resisting Forces & Moments

		OV	OVERTURNING			
Item		Force lbs	ft Distance	ft-#		
Heel Active Pressure	=	1,289.3	2.86	3,688.8		
Surcharge over Heel	=					
Surcharge Over Toe	=					
Adjacent Footing Load	=					
Added Lateral Load	=					
Load @ Stem Above Soil	=					
Seismic Earth Load	=	361.0	4.29	1,549.3		
	=					
Total		1,650.3	O.T.M.	5,238.1		
	=		=			
Resisting/Overturning Vertical Loads used fo	Rat i r Soi	i o I Pressure :	= = 2,035.	1.15 8 lbs		

		R	ESISTING	
		Force	Distance	Moment
		Ibs	ft	ft-#
Soil Over Heel	=	0.3	3.92	1.1
Sloped Soil Over Hee	=			
Surcharge Over Heel	=			
Adjacent Footing Load	=			
Axial Dead Load on Ster	m =	555.0	3.48	1,930.9
Axial Live Load on Stem	=	44.0	3.48	153.1
Soil Over Toe	=			
Surcharge Over Toe	=			
Stem Weight(s)	=	800.0	3.58	2,866.7
Earth @ Stem Transition	IS=			
Footing Weight	=	636.5	1.96	1,246.6
Key Weight	=			
Vert. Component	=		_	
Tota	al =	1,991.8	lbs R.M.=	6,045.3

#6@ 37.61 in

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING ENGINEERS	antilevered	Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Tilt			
Horizontal Deflection at Top of Wall du	<u>le to settlem</u>	nent of soil	
(Deflection due to wall bending not considered)			
Soil Spring Reaction Modulus	250.0	рсі	
Horizontal Defl @ Top of Wall (approximate only)	0.163	in	
The above calculation is not valid if the heel soil be	aring pressure	exceeds that of the toe,	
because the wall would then tend to rotate into the	retained soil.		

This Wall in File: M:\Stuart	Silk\18689 - Lundin R	esidence\Calculations\Foundation\C	Concret	te wall.RP	<		
RetainPro (c) 1987-2017, Bui License : KW-06057394 License To : QUANTUM (ild 11.17.07.27 CONSULTING ENGIN	Cantilevered Retaini	ng W	/all	Code: IBC	2015,ACI 3	318-14,ACI 530-13
Criteria		Soil Data					
Retained Height Wall height above soil Slope Behind Wall Height of Soil over Toe Water height over heel	 7.50 ft 0.50 ft 0.00 0.00 in 0.0 ft 	Allow Soil Bearing = 3 Equivalent Fluid Pressure Metho Active Heel Pressure = Passive Pressure = Soil Density, Heel = Soil Density, Toe = Footing Soil Friction = Soil height to ignore for passive pressure	3,000.0 d 35.0 450.0 110.00 0.525 5.40	psf psf/ft psf/ft pcf pcf		• • •	
Surcharge Loads		Lateral Load Applied to	Stem		Adjacent Fo	oting Loa	d I
Surcharge Over Heel Used To Resist Sliding Surcharge Over Toe Used for Sliding & Ove Axial Load Applied Axial Dead Load Axial Live Load Axial Load Eccentricity	= 0.0 psf 3 & Overturning = 0.0 erturning d to Stem = 555.0 lbs = 44.0 lbs = 1.3 in	Lateral Load = Height to Top = Height to Bottom = Load Type = Win (Ser Wind on Exposed Stem = (Service Level)	0.0 #/f 0.00 ft 0.00 ft d (W) rvice Le 0.0 ps	ft evel) sf	Adjacent Footin Footing Width Eccentricity Wall to Ftg CL I Footing Type Base Above/Be at Back of Wa Poisson's Ratio	g Load = = Dist = low Soil = all =	0.0 lbs 0.00 ft 0.00 in 0.00 ft Line Load 0.0 ft 0.300
Design Summary		Stem Construction		Bottom			
Wall Stability Ratios Overturning Slab Resist Total Bearing Load resultant ecc.	= 1.64 OK s All Sliding ! = 2,036 lbs = 8.71 in	Design Height Above Ftg Wall Material Above "Ht" Design Method Thickness Rebar Size Rebar Spacing Rebar Placed at	ft = = = = = =	Stem OK 0.00 Concrete LRFD 8.00 # 5 10.00 Center	ASD	LRFD	
Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel	= 1,101 psr Ol = 0 psf Ol = 3,000 psf Than Allowable = 1,541 psf = 0 psf	 Design Data fb/FB + fa/Fa Total Force @ Section Service Level Strength Level 	= lbs= lbs=	0.660 1,575.0			
Footing Shear @ Toe Footing Shear @ Heel Allowable Sliding Calcs	= 18.0 psi Oł = 0.0 psi Oł = 82.2 psi	K MomentActual K Service Level Strength Level MomentAllowable Shear Actual	ft-# = ft-# = =	4,014.2 6,083.7			
Lateral Sliding Force	= 1,289.3 lbs	Service Level Strength Level ShearAllowable Anet (Masonry) Rebar Depth 'd'	psi = psi = psi = in2 = in =	32.8 82.2 4.00	139.50		
Vertical component of acti NOT considered in the cal	ive lateral soil pressure	Masonry Data f'm Fs Solid Grouting HS Modular Ratio 'n' Wall Weight Short Term Factor	psi = psi = = psf = =	100.0			
Building Code Dead Load Live Load Earth, H	IBC 2015,ACI 1.200 1.600 1.600	Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data	= = =	Medium W ASD	/eight		
Wind, W Seismic, E	1.000 1.000	ťc Fy	psi = psi =	3,000.0 60,000.0			

This Wall in File: M:\Stuart Silk\18689 - Lundin Residence\Calculations\Foundation\Concrete wall.RPX

RetainPro (c) 1987-2017, Build 11.17.07.2 License : KW-06057394 License To : QUANTUM CONSULTI	Cantilevered F	Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-
Concrete Stem Rebar Area D	etails	
Bottom Stem As (based on applied moment) :	Vertical Reinforcing 0.2423 in2/ft	Horizontal Reinforcing
(4/3) * As :	0.3231 in2/ft	Min Stem T&S Reinf Area 1.536 in2
200bd/fy : 200(12)(4)/60000 :	0.16 in2/ft	Min Stem T&S Reinf Area per ft of stem Height : 0.192 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Options :
	===========	One layer of : Two layers of :
Required Area :	0.2423 in2/ft	#4@ 12.50 in #4@ 25.00 in
Provided Area :	0.372 in2/ft	#5@ 19.38 in #5@ 38.75 in
Maximum Area :	0.6503 in2/ft	#6@ 27.50 in #6@ 55.00 in
Footing Dimensions & Stre	Engths Footing Des	ign Results
Toe Width = Heel Width = Total Footing Width = Footing Thickness = 1	3.25 ft Factored Pressure 0.67 Factored Pressure 3.92 Mu' : Upward 3.00 in Mu' : Downward	$\begin{array}{cccc} Toe & Heel \\ = & 1,541 & 0 psf \\ = & 5,756 & 0 ft # \\ = & 1,030 & 0 ft # \\ = & 1,020 & 0 tt # \\ = & 1,0$
Key Width = Key Depth = Key Distance from Toe =	0.00 inMu: Design0.00 inActual 1-Way Sheat0.00 inAllow 1-Way Sheat0.00 ftToe Reinforcing	$= 4,726 0 \pi - \#$ ar = 17.99 0.00 psi r = 82.16 43.82 psi = # 5 @ 10.00 in
f'c = 3,000 psi Fy = 40 Footing Concrete Density = 15	0,000 psi Heel Reinforcing	= # 4 @ 18.00 in = None Spec'd
Min. As % = 0. Cover @ Top 2.00 @ Btm.=	0018 = 3.00 in Toe: #4@ 8.55 Heel: Not req'd: Key: No key de	Sizes & Spacings in, #5@ 13.25 in, #6@ 18.80 in, #7@ 25.64 in, #8@ 33.76 in, #9@ 42 Mu < phi*5*lambda*sqrt(f'c)*Sm efined
	Min footing T&S Min footing T&S If one layer of ho #4@ 8.55 in #5@ 13.25 in #6@ 18.80 in	reinf Area 1.10 in2 reinf Area per foot 0.28 in2 /ft prizontal bars: If two layers of horizontal bars: #4@ 17.09 in #5@ 26.50 in #6@ 37.61 in

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNIN	G			RE	SISTING	
Item		Force lbs	Distance ft	Moment ft-#			Force Ibs	Distance ft	Moment ft-#
Heel Active Pressure	=	1,289.3	2.86	3,688.8	Soil Over Heel	=	0.3	3.92	1.1
Surcharge over Heel	=				Sloped Soil Over Hee	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Stem	=	555.0	3.48	1,930.9
Load @ Stem Above So	il =				* Axial Live Load on Stem	=	44.0	3.48	153.1
	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
Tetal		1 200 2	отм –	2 600 0	Stem Weight(s)	=	800.0	3.58	2,866.7
Iotai		1,289.3	0.1.M.	3,688.8	Earth @ Stem Transitions	=			
	=		=		Footing Weight	=	636.5	1.96	1,246.6
Resisting/Overturning	g Rat	tio	=	1.64	Key Weight	=			
Vertical Loads used f	or So	il Pressure	= 2,035	.8 lbs	Vert. Component	=			
					Total	=	1,991.8 lb	s R.M.=	6,045.3

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING ENGINEERS	Cantilevered	I Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Tilt			
Horizontal Deflection at Top of Wall d	lue to settlen	nent of soil	
(Deflection due to wall bending not considered)			
Soil Spring Reaction Modulus	250.0	рсі	
Horizontal Defl @ Top of Wall (approximate only)	0.062	in	
The above calculation is not valid if the heel soil b	pearing pressure	exceeds that of the toe,	
because the wall would then tend to rotate into the	e retained soil.		

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING ENGINEERS

Lateral Sliding Force

Criteria		
Retained Height	=	10.00 ft
Wall height above soil	=	1.00 ft
Total Wall Height	=	11.00 ft
Top Support Height	=	11.00 ft
Slope Behind Wal	=	0.00
Height of Soil over Toe	=	0.00 in

Soil Data Allow Soil Bearing 3,000.0 psf Equivalent Fluid Pressure Method At-rest Heel Pressure 50.0 psf/ft = = Passive Pressure = 450.0 psf/ft Soil Density = 110.00 pcf Footing||Soil Frictior 0.400 = Soil height to ignore 12.00 in for passive pressure =

Restrained Retaining Wall

Surcharge Loads	Uniform Lateral Load Applied	to Stem	Adjacent Footing Load		
Surcharge Over Heel = 0.0 psf >>>Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 psf Used for Sliding & Overturning	Lateral Load = Height to Top = Height to Bottom =	0.0 #/ft 0.00 ft 0.00 ft	Adjacent Footing Load Footing Width Eccentricity Wall to Ftg CL Dist	= = =	0.0 lbs 0.00 ft 0.00 in 0.00 ft
Axial Load Applied to Stem	Load Type = Wir	nd (W)	Footing Type	l	_ine Load
Axial Dead Load=555.0 lbsAxial Live Load=44.0 lbsAxial Load Eccentricity=1.3 in	(Str Wind on Exposed Stem =	0.0 psf	Base Above/Below Soil at Back of Wall Poisson's Ratio	=	0.0 ft
Earth Pressure Seismic Load	K _h Soil Density Multiplier =	0.064 g Add	ed seismic per unit area	=	49.3 psf 💙
Stem Weight Seismic Load	F_p / W_p Weight Multiplier =	0.000 g Add	ed seismic per unit area	=	0.0 psf

Concrete Stem Construction

Thickness 8.00 in = Fy = Wall Weight = 100.0 psf f'c = Stem is FREE to rotate at top of footing

60,000 psi 3,000 psi

Seismic surcharge

	@ Top Support		Mmax Between Top & Base	@ Base of Wall	
		Stem OK	Stem OK	Stem OK	
Design Height Above Ftg	=	11.00 ft	4.64 ft	0.00 ft	
Rebar Size	=	# 5	# 5	# 5	
Rebar Spacing	=	14.00 in	14.00 in	14.00 in	
Rebar Placed at	=	Edge	Edge	Edge	
Rebar Depth 'd'	=	5.50 in	6.00 in	5.50 in	
Design Data					
fb/FB + fa/Fa	=	0.012	0.969	0.000	
MuActual	=	76.7 ft-#	6,647.6 ft-#	0.0 ft-#	
Mn * PhiAllowable	=	6,264.0 ft-#	6,861.9 ft-#	6,264.0 ft-#	
Shear Force @ this height	=	1,539.1 lbs		3,164.9 lbs	
ShearActual	=	23.32 psi		47.95 psi	
ShearAllowable	=	82.16 psi		82.16 psi	

Other Acceptable Sizes & Spacings:

Toe: # 4 @ 18.00 in Heel:# 4 @ 18.00 in Key: Slab Resists Sliding

Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm -or--or-

Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm Slab Resists Sliding - No Force on -or-

Stem We **Design Summary** 2,024 lbs **Total Bearing Load** = ...resultant ecc. 6.72 in = Soil Pressure @ Toe 1,012 psf OK = Soil Pressure @ Heel 1,012 psf OK = Allowable 3,000 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 0 psf ACI Factored @ Heel 3,705 psf = Footing Shear @ Toe 0.9 psi OK = Footing Shear @ Heel = 0.0 psi OK Allowable = 82.2 psi 986.2 lbs Reaction at Top = **Reaction at Bottom** 2,576.6 lbs = **Sliding Calcs**

Vertical component of active lateral soil pressure IS

=

2,576.6 lbs

NOT considered in the calculation of soil bearing

Load Factors	
Building Code	IBC 2015.ACI
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

D-20

RetainPro (c) 1987-2017,Build 11.17.07.2 License : KW-06057394 License To : QUANTUM CONSULTIN	7 Restraine IG ENGINEERS	d Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13	
Concrete Stem Rebar Area De	etails			
Top Support	Vertical Reinforcing	Horizontal Reinforcing		
As (based on applied moment) :	0.0033 in2/ft	-		
(4/3) * As :	0.0044 in2/ft	Min Stem T&S Reinf Area	2.112 in2	
200bd/fy : 200(12)(5.5)/60000 :	0.22 in2/ft	Min Stem T&S Reinf Area	per ft of stem Height : 0.192 in2/ft	
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Opt	tions :	
		One layer of : Two lay	ers of :	
Required Area :	0.1728 in2/ft	#4@ 12.50 in #4@ 2	5.00 in	
Provided Area :	0.2657 in2/ft	#5@ 19.38 in #5@ 3	8.75 in	
Maximum Area :	0.8941 in2/ft	#6@ 27.50 in #6@ 5	5.00 in	
Mmax Between Ends	Vertical Reinforcing	Horizontal Reinforcing		
As (based on applied moment) :	0.26 in2/ft			
(4/3) * As :	0.3467 in2/ft	Min Stem T&S Reinf Area 1.221 in2		
200bd/fy:200(12)(6)/60000:	0.24 in2/ft	Min Stem T&S Reinf Area per ft of stem Height : 0.192 in2/ft		
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Options :		
		One layer of : Two lay	ers of :	
Required Area :	0.26 in2/ft	#4@ 12.50 in #4@ 2	5.00 in	
Provided Area :	0.2657 in2/ft	#5@ 19.38 in #5@ 3	8.75 in	
Maximum Area :	0.9754 in2/ft	#6@ 27.50 in #6@ 5	5.00 in	
Base Support	Vertical Reinforcing	Horizontal Reinforcing		
As (based on applied moment) :	0 in2/ft			
(4/3) * As :	0 in2/ft	Min Stem T&S Reinf Area 0.891 in2		
200bd/fy : 200(12)(5.5)/60000 :	0.22 in2/ft	Min Stem T&S Reinf Area	per ft of stem Height : 0.192 in2/ft	
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft	Horizontal Reinforcing Opt	tions :	
		One layer of : Two lay	ers of :	
Required Area :	0.1728 in2/ft	#4@ 12.50 in #4@ 2	5.00 in	
Provided Area :	0.2657 in2/ft	#5@ 19.38 in #5@ 3	8.75 in	
Maximum Area :	0.8941 in2/ft	#6@ 27.50 in #6@ 5	5.00 in	

Footing Strengths & Dimensions Toe Width 1.33 ft = Heel Width 0.67 = Total Footing Width = 2.00 **Footing Thickness** = 13.00 in Key Width 12.00 in = Key Depth 0.00 in = Key Distance from Toe 2.00 ft = Fy = 40,000 psi 3,000 psi f'c = Footing Concrete Density = 150.00 pcf Min. As % 0.0018 = Cover @ Top = 2.00 in @ Btm.= 3.00 in

Footing Design Results

#5@ 13.25 in #6@ 18.80 in

		<u>Toe</u>	Hee	<u>el</u>
Factored Pressure	=	0	3,70	5 psf
Mu' : Upward	=	131		0 ft-#
Mu' : Downward	=	173		0 ft-#
Mu: Design	=	-43	-	0 ft-#
Actual 1-Way Shear	=	0.93	0.0	1 psi
Allow 1-Way Shear	=	82.16	82.1	6 psi
Min footing T&S reinf	Area		0.56	in2
Min footing T&S reinf Area per foot			0.28	in2 <i>/</i> ft
If an a law on af la anima at		ro. If thus		of horizonto

If one layer of horizontal bars:If two layers of horizontal bars:#4@ 8.55 in#4@ 17.09 in

#4@1	7.09 in
#5@2	26.50 in
#6@ 3	37.61 in

ainPro (c) 1987-2017, Build 11.1 ense : KW-06057394 ense To : QUANTUM CONS	∞ (c) 1987-2017, Build 11.17.07.27 : KW-06057394 ⊉ To : QUANTUM CONSULTING ENGINEERS			etaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Summary of Forces or	n Fo	oting : Slab	RESISTS sliding	g, stem is PINNE	D at footing
Forces acting on footing s	oil pr	essure			-
(taking moments about fro	nt of f	ooting to find ec	centricity)		
Surcharge Over Heel	=	lbs	ft	ft-#	
Axial Dead Load on Stem	=	599.0lbs	1.67 ft	998.1 ft-#	
Soil Over Toe	=	lbs	ft	ft-#	
Adjacent Footing Load	=	lbs	ft	ft-#	
Surcharge Over Toe	=	lbs	ft	ft-#	
Stem Weight	=	1,100.0lbs	1.67 ft	1,833.0ft-#	
Soil Over Heel	=	0.4lbs	2.00 ft	0.7ft-#	
Footing Weight	=	325.0lbs	1.00 ft	325.5ft-#	
Total Vertical Force	=	2,024.4lbs	Moment =	3,157.3ft-#	
Net Mom. at S	tem/F	tg Interface =	-1,133.0 ft-#	1	
Allow. Mom. @ S	tem/F	tg Interface =	3,915.0 ft-#	1	
Allow. Mom. Excee	eds A	pplied Mom.?	Yes		
Therefore Unifo	rm S	oil Pressure =	1,012.2 psf		

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

This Wall in File: M:\Stuart Silk\18689 - Lundin Residence\Calculations\Foundation\Concrete wall.RPX

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING ENGINEERS

Criteria		
Retained Height Wall height above soil Total Wall Height	=	16.00 ft 2.50 ft 18.50 ft
Top Support Height	=	11.67 ft
Slope Behind Wal Height of Soil over Toe	= =	0.00 0.00 in

Soil Data Allow Soil Bearing 3,000.0 psf = Equivalent Fluid Pressure Method 50.0 psf/ft At-rest Heel Pressure = = Passive Pressure = 450.0 psf/ft Soil Density 110.00 pcf = Footing||Soil Frictior 0.400 = Soil height to ignore 12.00 in for passive pressure =

Restrained Retaining Wall

Surcharge Loads		Uniform Lateral Load App	blied to Stem	Adjacent Footing Load	d
Surcharge Over Heel >>>Used To Resist S Surcharge Over Toe Used for Sliding & Ov Axial Load Applied to	= 0.0 psf Sliding & Overturning = 0.0 psf verturning • Stem	Lateral Load = Height to Top = Height to Bottom = Load Type =	0.0 #/ft 0.00 ft 0.00 ft Wind (W) (Strength Level)	Adjacent Footing Load Footing Width Eccentricity Wall to Ftg CL Dist Footing Type Base Above/Below Soil	= 0.0 lbs = 0.00 ft = 0.00 in = 0.00 ft Line Load
Axial Dead Load Axial Live Load Axial Load Eccentricity	= 256.0 lbs = 44.0 lbs y = 1.3 in	Wind on Exposed Stem =	0.0 psf	at Back of Wall Poisson's Ratio	= 0.0 ft = 0.300
Earth Pressure Seis	mic Load	K _h Soil Density Multiplier	= 0.064 g Add	led seismic per unit area	= 78.8 psf
Stem Weight Seismi	c Load	F _p / W _p Weight Multiplier	= 0.000 g Ada	Jed seismic per unit area	= 0.0 psf
Design Summary		Concrete Stem Con	struction		
Total Bearing Loadresultant ecc.	= 2,965 lbs = 7.05 in	Thickness = 10.00 Wall Weight = 125.0	in Fy = psf f'c =	60,000 psi 3,000 psi Seis	mic surcharge
Soil Pressure @ Toe Soil Pressure @ Heel	= 1,368 psf = 1,368 psf 3 000 psf	OK Stem is FREE to rotate at OK	top of footing		
Soil Pressure Les	s Than Allowable		@ Top Su	pport Top & Base	en @ Base of Wall
ACI Factored @ Toe ACI Factored @ Heel	= 0 psf = 4,809 psf	Design Height Above	Sten Ftg = 11.6	OK Stem OK 57 ft 5.20 ft	Stem OK 0.00 ft
Footing Shear @ Toe	= 0.9 psi	()K D. L. O'	щ	F // O	.

Footing Shear @ Toe	=	0.9 psi OK
Footing Shear @ Heel	=	0.0 psi OK
Allowable	=	82.2 psi
Reaction at Top	=	3,778.5 lbs
Reaction at Bottom	=	4,764.2 lbs
Sliding Calcs	=	4,764,2 lbs

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

IBC 2015,ACI
1.200
1.600
1.600
1.000
1.000

		Stem OK	Stem OK	Stem OK
Design Height Above Ftg	=	11.67 ft	5.20 ft	0.00 ft
Rebar Size	=	# 5	# 6	# 5
Rebar Spacing	=	12.00 in	6.75 in	12.00 in
Rebar Placed at	=	Center	Center	Edge
Rebar Depth 'd'	=	5.00 in	5.00 in	7.50 in
Design Data				
fb/FB + fa/Fa	=	0.333	0.999	0.000
MuActual	=	2,181.4 ft-#	14,881.9 ft-#	0.0 ft-#
Mn * PhiAllowable	=	6,549.8 ft-#	14,892.5 ft-#	10,037.3 ft-#
Shear Force @ this height	=	4,681.1 lbs		6,122.1 lbs
ShearActual	=	78.02 psi		68.02 psi
ShearAllowable	=	82.16 psi		82.16 psi
	-			

Other Acceptable Sizes & Spacings:

Toe: # 7 @ 18.00 in Heel:# 6 @ 16.00 in Key: Slab Resists Sliding -or- Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
-or- Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm

-or- Slab Resists Sliding - No Force on

D-24

This Wall in File: M:\Stuart Silk\18689 - Lundin Residence\Calculations\Foundation\Concrete wall.RPX

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING	Restraine	d Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Concrete Stem Rebar Area Det	ails		
Top Support	Vertical Reinforcing	Horizontal Reinforcir	ng
As (based on applied moment) :	0.1036 in2/ft		
(4/3) * As :	0.1381 in2/ft	Min Stem T&S Reinf	Area 2.800 in2
200bd/fy : 200(12)(5)/60000 :	0.2 in2/ft	Min Stem T&S Reinf	Area per ft of stem Height : 0.240 in2/ft
0.0018bh : 0.0018(12)(10) :	0.216 in2/ft	Horizontal Reinforcir	ng Options :
		One layer of : Tw	wo layers of :
Required Area :	0.216 in2/ft	#4@ 10.00 in #	#4@ 20.00 in
Provided Area :	0.31 in2/ft	#5@ 15.50 in #	#5@ 31.00 in
Maximum Area :	0.8128 in2/ft	#6@ 22.00 in #	∉6@ 44.00 in
Mmax Between Ends	Vertical Reinforcing	Horizontal Reinforcir	ng
As (based on applied moment) :	0.7065 in2/ft		
(4/3) * As :	0.9419 in2/ft	Min Stem T&S Reinf	Area 1.552 in2
200bd/fy : 200(12)(5)/60000 :	0.2 in2/ft	Min Stem T&S Reinf	Area per ft of stem Height : 0.240 in2/ft
0.0018bh : 0.0018(12)(10) :	0.216 in2/ft	Horizontal Reinforcir	ng Options :
		One layer of : Tw	wo layers of :
Required Area :	0.7065 in2/ft	#4@ 10.00 in #	#4@ 20.00 in
Provided Area :	0.7822 in2/ft	#5@ 15.50 in #	#5@ 31.00 in
Maximum Area :	0.8128 in2/ft	#6@ 22.00 in #	∉6@ 44.00 in
Base Support	Vertical Reinforcing	Horizontal Reinforcir	ng
As (based on applied moment) :	0 in2/ft		
(4/3) * As :	0 in2/ft	Min Stem T&S Reinf	Area 1.248 in2
200bd/fy : 200(12)(7.5)/60000 :	0.3 in2/ft	Min Stem T&S Reinf	Area per ft of stem Height : 0.240 in2/ft
0.0018bh : 0.0018(12)(10) :	0.216 in2/ft	Horizontal Reinforcir	ng Options :
		One layer of : Tw	wo layers of :
Required Area :	0.216 in2/ft	#4@ 10.00 in #	#4@ 20.00 in
Provided Area :	0.31 in2/ft	#5@ 15.50 in #	#5@ 31.00 in
Maximum Area :	1.2192 in2/ft	#6@ 22.00 in #	#6@ 44.00 in
Footing Strengths & Dimensions	Footing D	esign Results	

Footing Strengths & Di	mens	10115
Toe Width	=	1.33 ft
Heel Width	=	0.83
Total Footing Width	=	2.17
Footing Thickness	=	13.00 in
Key Width	=	12.00 in
Key Depth	=	0.00 in
Key Distance from Toe	=	2.00 ft
f'c = 3,000 psi	Fy =	40,000 psi
Footing Concrete Density	=	150.00 pcf
Min. As %	=	0.0018
Cover @ Top = 2.00 in	@	Btm.= 3.00 in

		Toe	Hee	l	
Factored Pressure	=	0	4,80	9 psf	
Mu' : Upward	=	150		0 ft-#	
Mu' : Downward	=	173		0 ft-#	
Mu: Design	=	-23		0 ft-#	
Actual 1-Way Shear	=	0.93	0.0	0 psi	
Allow 1-Way Shear	=	82.16	0.0	0 psi	
Min footing T&S reinf	Area		0.61	in2	
Min footing T&S reinf /	Area	per foot	0.28	in2 /ft	
If one layer of horizont	al ba	ars: If two	o layers	of horizo	ntal bars:
#4@ 8.55 in		#4	@ 17.0	9 in	
#5@ 13.25 in		#5	@ 26.5	0 in	
#6@ 18.80 in		#6	@ 37.6	1 in	

This Wall in File: M:\Stuart Silk\18689 - Lundin Residence\Calculations\Foundation\Concrete wall.RPX

ninPro (c) 1987-2017, Build 11.17.07.27 nse : KW-06057394 ense To : QUANTUM CONSULTING ENGINEERS			Restrained Retaining Wall		Code: IBC 2015,ACI 318-14,ACI 530-13
Summary of Forces or	n Fo	oting : Slab	RESISTS slidin	g, stem is PINNE	D at footing
Forces acting on footing s	oil pr	essure			
(taking moments about fro	nt of f	ooting to find ec	centricity)		
Surcharge Over Heel	=	lbs	ft	ft-#	
Axial Dead Load on Stem	=	300.0lbs	1.75 ft	524.9ft-#	
Soil Over Toe	=	lbs	ft	ft-#	
Adjacent Footing Load	=	lbs	ft	ft-#	
Surcharge Over Toe	=	lbs	ft	ft-#	
Stem Weight	=	2,312.5lbs	1.75 ft	4,046.1ft-#	
Soil Over Heel	=	lbs	2.17 ft	ft-#	
Footing Weight	=	352.0lbs	1.08 ft	381.8ft-#	
Total Vertical Force	=	2,964.5lbs	Moment =	4,952.8ft-#	
Net Mom. at S	tem/F	tg Interface =	-1,741.7 ft-i	¥	
Allow. Mom. @ S	tem/F	tg Interface =	6,273.3 ft-i	¥	
Allow. Mom. Excee	eds A	pplied Mom.?	Yes		
Therefore Unifo	rm S	oil Pressure =	1,368.5 ps	f	

LUNDIN RESIDENCE

4041 West Mercer Way Mercer Island, WA 98040

Quantum Job Number: 18689.01

RETAINING WALL CALCULATIONS

RetainPro (c) 1987-2017, Bu License : KW-06057394 License To : QUANTUM (ild 11.17.07.27	' <u>G ENGINE</u>	Cantilevered Retain	ing V	Vall	Code: IBC 2015,AC	CI 318-14,ACI 530-13
Criteria			Soil Data				
Retained Height Wall height above soil Slope Behind Wall	= 3.50 = 0.00 = 0.00	ft ft	Allow Soil Bearing = 3 Equivalent Fluid Pressure Metho Active Heel Pressure =	3,000.0 od 35.0) psf) psf/ft		
Height of Soil over Toe Water height over heel	= 0.00 = 0.0	in ft	Passive Pressure = Soil Density, Heel = Soil Density, Toe = Footing Soil Friction = Soil height to ignore for passive pressure =	450.0 110.00 0.00 0.450 12.00) psf/ft) pcf) pcf) in		
Surcharge Loads			Lateral Load Applied to	Stem		djacent Footing L	oad
Surcharge Over Heel Used To Resist Sliding Surcharge Over Toe Used for Sliding & Ove Axial Load Applie	= 0.0 & Overturni = 0.0 erturning d to Stem	psf ng	Lateral Load = Height to Top = Height to Bottom = Load Type = Wir (Se	0.0 #, 0.00 ft 0.00 ft nd (W) rvice Le	/ft A F E V evel) F	djacent Footing Load ooting Width ccentricity /all to Ftg CL Dist ooting Type ase Above/Below Soil	= 0.0 lbs = 0.00 ft = 0.00 in = 0.00 ft Line Load
Axial Dead Load Axial Live Load Axial Load Eccentricity	= 0.0 = 0.0 = 0.0	lbs lbs in	Wind on Exposed Stem ₌ (Service Level)	0.0 p	sf P	at Back of Wall oisson's Ratio	= 0.0 ft = 0.300
Earth Pressure S	eismic Lo	ad	\sim	\sim	_		
Method:Uniform Multiplier Used (Multiplier used on soil o	= 7.000 density)	>	Uniform Seismic Force = 30 Total Seismic Force = 13	0.333 1.444	}	Seismic surch	arge
Design Summary			Stem Construction		Bottom		
Wall Stability Ratios Serturning Sliding Total Bearing Load resultant ecc. Soil Pressure @ Toe	= 1.21 = 1,21 = 4.9 = 87	14 Ratio < 18 Ibs 14 in 79 psf OK	Design Height Above Ftg Wall Material Above "Ht Design Method Thickness Rebar Size Rebar Spacing Rebar Placed at Design Data	ft = = = = = =	Concrete LRFD 6.00 # 4 12.00 Center	ASD LRFD	
Soil Pressure @ Heel	= 3.00	34 psf OK	fb/FB + fa/Fa	=	0.344		
Allowable Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel	= 0,00 Than Allowa = 1,23 = 4	ble 31 psf 47 psf	Total Force @ Section Service Level Strength Level Moment _ Actual	lbs = lbs =	449.2	Seismic load sliding is perr	is included, mitted to be
Footing Shear @ Toe Footing Shear @ Hee	= 0 = 3	.1 psi OK .3 psi OK	Service Level	ft-# = ft-# =	586.0		
Allowable Sliding Calcs Lateral Sliding Force less 100% Passive Force	= 75 = 420	.0 psi .6 lbs .8 lbs	MomentAllowable ShearActual Service Level	= psi =	1,705.6		
less 100% Friction Force	= - 548	.0 lbs	Strength Level	psi =	12.5		
Added Force Req'd for 1.5 Stability	= 0 = 151	.0 lbs OK .7 lbs NG	ShearAllowable Anet (Masonry) Rebar Depth ˈd'	psi = in2 = in =	75.0 3.00	139.50	
Vertical component of acti NOT considered in the cal	ve lateral soi culation of so	l pressure bil bearing	f'm Fs Solid Grouting IS Modular Ratio 'n' Wall Weight	psi = psi = = = psf =	72.5		
Load Factors Building Code Dead Load Live Load	IBC 201	5,ACI 1.200 1.600	Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Method	= = =	Medium We	eight	
Earth, H Wind, W Seismic, E		1.600 1.000 1.000	Concrete Data f'c E-2 Fy	psi = psi =	2,500.0 40,000.0		

RetainPro (c) 1987-2017, Build 11.17. License : KW-06057394 License To : QUANTUM CONSUI	^{07.27} (TING ENGINEERS	Cantilevered R	etaining Wa	Code: IBC 2015,ACI 318-14,ACI 530-1
Concrete Stem Rebar Area	Details			
Bottom Stem As (based on applied moment) :	Vertical Re 0.0728 in2	einforcing /ft	Horizontal Reinf	forcing
(4/3) * As :	0.0971 in2	/ft	Min Stem T&S F	Reinf Area 0.504 in2
200bd/fy : 200(12)(3)/40000 :	0.18 in2/ft		Min Stem T&S F	Reinf Area per ft of stem Height : 0.144 in2/ft
0.0018bh : 0.0018(12)(6) :	0.1296 in2	/ft	Horizontal Reinf	forcing Options :
		====	One layer of :	Two layers of :
Required Area :	0.1296 in2	/ft	#4@ 16.67 in	#4@ 33.33 in
Provided Area :	0.2 in2/ft	:	#5@ 25.83 in	#5@ 51.67 in
Maximum Area :	0.6096 in2	/ft	#6@ 36.67 in	#6@ 73.33 in
Footing Dimensions & S	trengths	Footing Desig	gn Results	
Toe Width=Heel Width=Total Footing Width=Footing Thickness=Key Width=Key Depth=Key Distance from Toe=f'c=2,500 psiFyFooting Concrete Density=Min. As %=Cover @ Top2.00@ B	0.50 ft 2.17 2.67 10.00 in 0.00 in 1.50 ft 40,000 psi 145.00 pcf 0.0018 tm.= 3.00 in	Factored Pressure Mu': Upward Mu': Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe Reinforcing Heel Reinforcing Key Reinforcing Other Acceptable S Toe: Not req'd: M Heel: Not req'd: M Key: No key defi	Toe = 1,231 = 145 = 18 = 127 = 0.06 = 40.00 = #4 @ 16.0 = #4 @ 18.0 = None Spect Sizes & Spacir Au < phi*5*lambound	Heel 47 psf 409 ft-# 843 ft-# 435 ft-# 3.29 psi 40.00 psi 00 in c'd ngs oda*sqrt(f'c)*Sm
		Min footing T&S r Min footing T&S r If one layer of hor #4@ 11.11 in #5@ 17.22 in #6@ 24.44 in	einf Area einf Area per foo izontal bars:	0.58 in2 ot 0.22 in2 /ft If two layers of horizontal bars: #4@ 22.22 in #5@ 34.44 in #6@ 48.89 in

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING)
Item		Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	=	328.6	1.44	474.7
Surcharge over Heel	=			
Surcharge Over Toe	=			
Adjacent Footing Load	=			
Added Lateral Load	=			
Load @ Stem Above Soil	=			
Seismic Earth Load	=	92.0	2.17	199.4
	=			
Total		420.6	О.Т.М.	674.0
	=		=	
Resisting/Overturning Vertical Loads used for	Ratio Soil	o Pressure :	= = 1,217.	2.67 8 lbs

		R		
		Force lbs	Distance ft	ft-#
Soil Over Heel	=	641.8	1.83	1,176.7
Sloped Soil Over Hee	=			
Surcharge Over Heel	=			
Adjacent Footing Load	=			
Axial Dead Load on St	em =			
* Axial Live Load on Ste	m =			
Soil Over Toe	=			
Surcharge Over Toe	=			
Stem Weight(s)	=	253.8	0.75	190.3
Earth @ Stem Transiti	ons=			
Footing Weight	=	322.3	1.33	429.7
Key Weight	=		1.50	
Vert. Component	=			
Тс	otal =	1,217.8	lbs R.M.=	1,796.8

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING ENGINEER	Cantilevered	d Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Tilt			
Horizontal Deflection at Top of Wall	due to settlen	<u>nent of soil</u>	
(Deflection due to wall bending not considered)			
Soil Spring Reaction Modulus	250.0	рсі	
Horizontal Defl @ Top of Wall (approximate onl	ly) 0.032	in	
The above calculation is not valid if the heel soil	l bearing pressure	exceeds that of the toe,	
because the wall would then tend to rotate into	the retained soil.		

This Wall in File: M:\Stuar	t Silk\186	89 - Lundin	Resid	ence\Calculations\Retaining wa	all\Site	retainin			
RetainPro (c) 1987-2017, Bu License : KW-06057394 License To : QUANTUM	uild 11.17. CONSUL	07.27 _TING ENGI	NEER	Cantilevered Retaini	ing V	Vall	Code: IBC	2015,ACI	318-14,ACI 530-13
Criteria			5	Soil Data					
Retained Height Wall height above soil Slope Behind Wall Height of Soil over Toe Water height over heel	= = = =	3.50 ft 0.00 ft 0.00 0.00 in 0.0 ft	A E A S S F S	Illow Soil Bearing = 33 quivalent Fluid Pressure Method = ctive Heel Pressure = rassive Pressure = roil Density, Heel = roil Density, Toe = roil Density, Toe = roil Density, Toe = roil height to ignore = for passive pressure =	3,000.0 od 35.0 450.0 110.00 0.450 12.00) psf) psf/ft) psf/ft) pcf) pcf) in			
Surcharge Loads				Lateral Load Applied to	Stem		Adjacent Fo	oting Loa	ad
Surcharge Over Heel Used To Resist Slidin Surcharge Over Toe Used for Sliding & Over Axial Load Applie	g & Over = erturning	0.0 psf turning 0.0		.ateral Load = Height to Top = Height to Bottom = .oad Type = Win (Ser	0.0 #, 0.00 ft 0.00 ft d (W) rvice L	/ft evel)	Adjacent Footin Footing Width Eccentricity Wall to Ftg CL I Footing Type Base Above/Be	ig Load = = Dist =	0.0 lbs 0.00 ft 0.00 in 0.00 ft Line Load
Axial Dead Load Axial Live Load Axial Load Eccentricity	= = =	0.0 lbs 0.0 lbs 0.0 in	- \	Wind on Exposed Stem ₌ (Service Level)	0.0 p	sf	at Back of Ware Poisson's Ratio	all =	0.0 ft 0.300
Design Summary				Stem Construction		Bottom			
Wall Stability Ratios Overturning Sliding Total Bearing Load	= = =	4.02 OK 1.52 OK 1,260 lbs		Design Height Above Ftg Wall Material Above "Ht" Design Method Thickness Rebar Size	ft = = = =	Stem OK 0.00 Concrete LRFD 6.00 # 4	ASD	LRFD	
resultant ecc. Soil Pressure @ Toe Soil Pressure @ Heel	= = =	2.82 in 693 psf (223 psf (OK OK	Rebar Spacing Rebar Placed at Design Data fb/FB + fa/Fa	= = =	12.00 Center 0.23 5	;		
Allowable Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel	= s Than Al = =	3,000 psf llowable 971 psf 312 psf		Total Force @ Section Service Level Strength Level MomentActual	lbs = lbs =	343.0			
Footing Shear @ Toe Footing Shear @ Hee Allowable Sliding Calcs	= = =	0.1 psi (1.6 psi (75.0 psi	OK OK	Service Level Strength Level MomentAllowable	ft-# = ft-# = =	400.2 1,705.6			
Lateral Sliding Force less 100% Passive Force less 100% Friction Force	= :e = - :e = -	328.6 lbs 68.8 lbs 566.9 lbs		ShearActual Service Level Strength Level	psi = psi =	9.5			
Added Force Req'd for 1.5 Stability	=	0.0 lbs (0.0 lbs (JK JK	Anet (Masonry) Rebar Depth 'd' Masonry Data	psi = in2 = in =	3.00	139.50		
Vertical component of act NOT considered in the ca	tive latera	al soil pressu of soil beari	ıre IS ng	f'm Fs Solid Grouting Modular Ratio 'n' Wall Weight Short Torm Footor	psi = psi = = psf =	72.5			
Load Factors Building Code Dead Load Live Load	IBC	2015,ACI 1.200 1.600		Equiv. Solid Thick. Masonry Block Type Masonry Design Method	= = =	Medium V ASD	Veight		
⊨aπn, H Wind, W Seismic, E		1.600 1.000 1.000		f'c Fy	psi = psi =	2,500.0 40,000.0			

This Wall in File: M:\Stuart Silk\18689 - Lundin Residence\Calculations\Retaining wall\Site retainin

RetainPro (c) 1987-2017, Build 11 License : KW-06057394 License To : QUANTUM CON	1.17.07.27 SULTING ENGINEERS	Cantilevered R	etaining W	All Code: IBC 2015,ACI 318-14,ACI 530-13
Concrete Stem Rebar A	rea Details			
Bottom Stem As (based on applied momen	Vertical F t) : 0.0497 in	Reinforcing 2/ft	Horizontal Reinf	forcing
(4/3) * As :	0.0663 in	2/ft	Min Stem T&S F	Reinf Area 0.504 in2
200bd/fy:200(12)(3)/40000:	0.18 in2/f	t	Min Stem T&S F	Reinf Area per ft of stem Height : 0.144 in2/ft
0.0018bh : 0.0018(12)(6) :	0.1296 in	2/ft	Horizontal Reinf	forcing Options :
	=======	=====	One layer of :	Two layers of :
Required Area :	0.1296 in	2/ft	#4@ 16.67 in	#4@ 33.33 in
Provided Area :	0.2 in2/ft	;	#5@ 25.83 in	#5@ 51.67 in
Maximum Area :	0.6096 in	2/ft	#6@ 36.67 in	#6@ 73.33 in
Footing Dimensions	& Strengths	Footing Desig	gn Results	
Toe Width=Heel Width=Total Footing Width=Footing Thickness=Key Width=Key Depth=Key Distance from Toe=f'c =2,500 psiFyFooting Concrete Density=Min. As %=Cover @ Top2.00	0.50 ft 2.25 2.75 10.00 in 0.00 in 0.00 in 1.50 ft = 40,000 psi 145.00 pcf 0.0018 @ Btm.= 3.00 in	Factored Pressure Mu': Upward Mu: Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe Reinforcing Heel Reinforcing Key Reinforcing Other Acceptable S Toe: Not req'd: M Heel: Not req'd: M Key: No key defi	Toe = 971 = 116 = 18 = 98 = 0.06 = 40.00 = # 4 @ 16.0 = # 4 @ 18.0 = # 4 @ 18.0 = None Spect Sizes & Spacin Au < phi*5*lamb	Heel 312 psf 692 ft-# 929 ft-# 238 ft-# 1.56 psi 40.00 psi 00 in 00 in 00 in c'd ings oda*sqrt(f'c)*Sm
		Min footing T&S r Min footing T&S r If one layer of hor #4@ 11.11 in #5@ 17.22 in #6@ 24 44 in	einf Area einf Area per foo izontal bars:	0.59 in2 bot 0.22 in2 /ft If two layers of horizontal bars: #4@ 22.22 in #5@ 34.44 in #6@ 48.89 in

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING				RE	SISTING	
Item		Force lbs	Distance ft	ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	=	328.6	1.44	474.7	Soil Over Heel	=	673.8	1.88	1,263.3
Surcharge over Heel	=				Sloped Soil Over Hee	=			
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ster	m =			
Load @ Stem Above So	il =				* Axial Live Load on Stem	=			
	=				Soil Over Toe	=			
					Surcharge Over Toe	=			
Total		200 E	отм —	1717	Stem Weight(s)	=	253.8	0.75	190.3
TOLAI		320.0	0.1.1	4/4./	Earth @ Stem Transition	IS=			
	=		=		Footing Weight	=	332.3	1.38	456.9
Resisting/Overturning	g Rat	io	=	4.02	Key Weight	=		1.50	
Vertical Loads used for	or So	il Pressure	= 1,259.	8 lbs	Vert. Component	=			
					Tota	al =	1.259.8	os R.M.=	1.910.5

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING ENGINEER	Cantilevered	d Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Tilt			
Horizontal Deflection at Top of Wall	due to settlen	nent of soil	
(Deflection due to wall bending not considered)			
Soil Spring Reaction Modulus	250.0	рсі	
Horizontal Defl @ Top of Wall (approximate onl	ly) 0.025	in	
The above calculation is not valid if the heel soil	l bearing pressure	exceeds that of the toe,	
because the wall would then tend to rotate into	the retained soil.		

RetainPro (c) 1987-2017, Build License : KW-06057394 License To : QUANTUM C	d 11.17.07.27 ONSULTING ENGINE	Cantilevered Retaini	ng V	Vall	Code: IBC 2015,ACI 318-14,ACI 530-13
Criteria		Soil Data			15
Retained Height Wall height above soil Slope Behind Wall	= 6.50 ft = 0.50 ft = 1.50	Allow Soil Bearing = 4 Equivalent Fluid Pressure Metho Active Heel Pressure =	,000.0 d 35.0) psf) psf/ft	
Height of Soil over Toe	= 42.00 in = 0.0 ft	=Passive Pressure=Soil Density, Heel=Soil Density, Toe=Footing Soil Friction=Soil height to ignore for passive pressure=	450.0 110.00 0.00 0.450 12.00) psf/ft) pcf) pcf)	
Surcharge Loads		Lateral Load Applied to	Stem		Adjacent Footing Load
Surcharge Over Heel Used To Resist Sliding Surcharge Over Toe Used for Sliding & Over	= 0.0 psf & Overturning = 0.0 turning	Lateral Load = Height to Top = 0 Height to Bottom = 0 Load Type = Win	0.0 #/ 0.00 ft 0.00 ft d (W)	/ft A E V	Adjacent Footing Load = 0.0 lbs Footing Width = 0.00 ft Eccentricity = 0.00 in Vall to Ftg CL Dist = 0.00 ft Footing Type Line Load
Axial Dead Load Axial Live Load Axial Load Eccentricity	= 0.0 lbs = 0.0 lbs = 0.0 in	(Ser Wind on Exposed Stem ₌ (Service Level)	0.0 p	sf F	Base Above/Below Soil at Back of Wall = 0.0 ft Poisson's Ratio = 0.300
Earth Pressure Se	ismic Load	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim		
Method : Uniform Multiplier Used (Multiplier used on soil de	= 7.000 ensity)	Uniform Seismic Force = 52 Total Seismic Force = 393	500 750	}•	Seismic surcharge
Design Summary		Stem Construction] _	Bottom	
Wall Stability Ratios Overturning Sliding Total Bearing Load resultant ecc.	= 1.10 Ratio < = 3.89 OK = 1,281 lbs = 21.65 in	1.5! Design Height Above Ftg Wall Material Above "Ht" Design Method Thickness Rebar Size Rebar Spacing	ft = = = = =	0.00 Concrete LRFD 8.00 # 4 7.75	ASD LRFD
Soil Pressure @ Toe Soil Pressure @ Heel	= 3,055 psf OK = 0 psf OK - 4.000 psf	Rebar Placed at Design Data fb/FB + fa/Fa	=	5.75 i 0.718	
ACI Factored @ Toe ACI Factored @ Heel Footing Shear @ Toe Footing Shear @ Heel	Than Allowable = 4,277 psf = 0 psf = 3.4 psi OK = 1.2 psi OK	Service Level Strength Level MomentActual Service Level Strength Level	lbs = lbs = ft-# = ft-# =	1,524.3 3,672.2	Seismic load is included, sliding is permitted to be taken as 1.1
Sliding Calcs	= 75.0 psi	MomentAllowable	=	5,115.6	
Lateral Sliding Force less 100% Passive Force less 100% Friction Force	= 1,260.0 lbs = - 4,331.3 lbs = - 576.4 lbs	ShearActual Service Level Strength Level	psi = psi =	22.1	
Added Force Req'd for 1.5 Stability	= 0.0 lbs OK = 0.0 lbs OK	Anet (Masonry) Rebar Depth 'd' Masonry Data	in2 = in =	5.75	139.50
Vertical component of activ NOT considered in the calc	e lateral soil pressure l ulation of soil bearing	f'm Fs Solid Grouting S Modular Ratio 'n' Wall Weight	psi = psi = = psf =	96.7	
Load Factors Building Code Dead Load Live Load	IBC 2015,ACI 1.200 1.600	Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Method	= = =	Medium W ASD	eight
Earth, H Wind, W Seismic, E	1.600 1.000 1.000	f'c E-9 Fy	psi = psi =	2,500.0 40,000.0	

RetainPro (c) 1987-2017, Build 11.1 License : KW-06057394 License To : QUANTUM CONSU	7.07.27 JLTING ENGINEERS	Cantilevered R	etaining Wa	all Code: IBC 2015,ACI 318-14,ACI 530-13
Concrete Stem Rebar Are	a Details			
Bottom Stem As (based on applied moment) :	Vertical R 0.2254 in	einforcing 2/ft	Horizontal Reinf	orcing
(4/3) * As :	0.3005 in	2/ft	Min Stem T&S R	Reinf Area 1.344 in2
200bd/fy:200(12)(5.75)/40000:	: 0.345 in2	/ft	Min Stem T&S R	Reinf Area per ft of stem Height : 0.192 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in	2/ft	Horizontal Reinf	orcing Options :
	=======		One layer of :	Two layers of :
Required Area :	0.3005 in	2/ft	#4@ 12.50 in	#4@ 25.00 in
Provided Area :	0.3097 in	2/ft	#5@ 19.38 in	#5@ 38.75 in
Maximum Area :	1.1684 in	2/ft	#6@ 27.50 in	#6@ 55.00 in
Footing Dimensions &	Strengths	Footing Desig	gn Results	
Toe Width=Heel Width=Total Footing Width=Footing Thickness=Key Width=Key Depth=Key Distance from Toe=f'c=2,500 psiFyFooting Concrete Density=Min. As %=Cover @ Top2.00@ 1	3.50 ft 0.67 4.17 12.00 in 0.00 in 0.00 in 1.50 ft 40,000 psi 145.00 pcf 0.0018 Btm.= 3.00 in	Factored Pressure Mu': Upward Mu': Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe Reinforcing Heel Reinforcing Key Reinforcing Other Acceptable Toe: Not req'd: N Heel: Not req'd: N Key: No key def	Toe = 4,277 = 5,775 = 3,896 = 1,879 * = * 3.44 = 40.00 = # 4 @ 16.0 = # 4 @ 18.0 = None Spect Sizes & Spacin Mu < phi*5*lambor	Heel 0 psf 0 ft-# 0 ft-# 1.24 psi 40.00 psi 0 in 0 in 'd https://datsgrt(f'c)*Sm
		Min footing T&S r Min footing T&S r If one layer of hor #4@ 9.26 in #5@ 14.35 in #6@ 20.37 in	reinf Area einf Area per foo izontal bars:	1.08 in2 ot 0.26 in2 /ft If two layers of horizontal bars: #4@ 18.52 in #5@ 28.70 in #6@ 40.74 in

Summary of Overturning & Resisting Forces & Moments

		OVERTURNING					
Item		Force Ibs	Distance ft	Moment ft-#			
Heel Active Pressure	=	984.4	2.50	2,460.9			
Surcharge over Heel	=						
Surcharge Over Toe	=						
Adjacent Footing Load	=						
Added Lateral Load	=						
Load @ Stem Above Soil	=						
Seismic Earth Load	=	275.6	3.75	1,033.6			
	=						
Total		1,260.0	О.Т.М.	3,494.5			
	=		=				
Resisting/Overturning Ratio=1.10Vertical Loads used for Soil Pressure =1,280.8lbs							

		RI		
		Force Ibs	Distance ft	Moment ft-#
Soil Over Heel	=		4.17	
Sloped Soil Over Hee	=		4.17	
Surcharge Over Heel	=			
Adjacent Footing Loa	d =			
Axial Dead Load on S	Stem =			
* Axial Live Load on St	em =			
Soil Over Toe	=		1.75	
Surcharge Over Toe	=			
Stem Weight(s)	=	676.7	3.83	2,593.9
Earth @ Stem Transit	ions=			
Footing Weight	=	604.2	2.08	1,258.7
Key Weight	=		1.50	
Vert. Component	=		_	
Т	otal =	1,280.8	lbs R.M.=	3,852.6

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

If seismic is included, the OTM and sliding ratios be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING ENGINEERS	ntilevered Re	taining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Tilt			
Horizontal Deflection at Top of Wall due	e to settlement	of soil	
(Deflection due to wall bending not considered)			
Soil Spring Reaction Modulus	250.0 pci		
Horizontal Defl @ Top of Wall (approximate only)	0.143 in		
The above calculation is not valid if the heel soil bear	ring pressure excee	ds that of the toe,	
because the wall would then tend to rotate into the re	etained soil.		

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394		ing N		Code: IBC 201	5,ACI 318-14,ACI 530-13
Criteria	Soil Data				1.5
Retained Height=6.50 ftWall height above soil=0.50 ftSlope Behind Wall=1.50Height of Soil over Toe=42.00 inWater height over heel=0.0 ft	Allow Soil Bearing = 3 Equivalent Fluid Pressure Method Active Heel Pressure = Active Heel Pressure = = Passive Pressure = Soil Density, Heel = Soil Density, Heel = = Soil Density, Toe = Footing Soil Friction = Soil height to ignore =	3,000.0 35.0 450.0 110.00 0.00 0.450 12.00	psf psf/ft psf/ft pcf pcf	•	
Surcharge Loads	Lateral Load Applied to	Stem		Adjacent Footin	
Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 Used for Sliding & Overturning Axial Load Applied to Stem Axial Dead Load = 0.0 lbs Axial Live Load = 0.0 lbs Axial Load Eccentricity = 0.0 lbs	Lateral Load = Height to Top = Height to Bottom = Load Type = Win (Se Wind on Exposed Stem = (Service Level)	0.0 #/ 0.00 ft 0.00 ft nd (W) rvice Le 0.0 ps	ft evel)	Adjacent Footing Loa Footing Width Eccentricity Wall to Ftg CL Dist Footing Type Base Above/Below S at Back of Wall Poisson's Ratio	$\begin{aligned} \mathbf{g} \ \underline{\mathbf{C}} \mathbf{d} &= 0.0 \ \text{lbs} \\ &= 0.00 \ \text{ft} \\ &= 0.00 \ \text{in} \\ &= 0.00 \ \text{ft} \\ & \text{Line Load} \end{aligned}$
Design Summary	Stem Construction		Bottom		
Wall Stability Ratios Overturning = 1.57 OK Sliding = 4.99 OK Total Bearing Load = 1,281 lbs resultant ecc. = 11.96 in Soil Pressure @ Toe = 786 psf (Compare) Allowable = 3,000 psf Soil Pressure @ Toe = 1100 psf	Design Height Above Ftg Wall Material Above "Ht" Design Method Thickness Rebar Size Rebar Spacing Rebar Placed at Design Data fb/FB + fa/Fa Total Force @ Section Service Level	ft = = = = = = Ibs =	Stem OK 0.00 Concrete LRFD 8.00 # 4 8.00 5.75 i 0.516	ASD LR	FD
ACI Factored @ Heel=0 psfFooting Shear @ Toe=3.7 psi (CFooting Shear @ Heel=1.2 psi (CAllowable=75.0 psiSliding Calcs	Strength Level MomentActual Service Level Strength Level MomentAllowable ShearActual Service Level Strength Level Strength Level OK ShearAllowable OK Anet (Masonry) Rebar Depth 'd'	lbs = ft-# = ft-# = psi = psi = in2 = in =	1,183.0 2,563.2 4,962.6 17.1 75.0 5.75	139.50	
Vertical component of active lateral soil pressu NOT considered in the calculation of soil beari Building Code IBC 2015,ACI Dead Load 1.200 Live Load 1.600 Earth, H 1.600 Wind, W 1.000 Seismic E 1000	Masonry Data f'm Fs Solid Grouting Modular Ratio 'n' Wall Weight Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data f'c Fy	psi = psi = = psf = = = I = psi = psi =	96.7 Medium V ASD 2,500.0 40,000.0	Veight	

RetainPro (c) 1987-2017, Build 11.17 License : KW-06057394 License To : QUANTUM CONSU	^{.07.27} (LTING ENGINEERS	Cantilevered R	etaining	Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Concrete Stem Rebar Area	a Details				
Bottom Stem As (based on applied moment) :	Vertical Re 0.1573 in2	einforcing /ft	Horizontal Re	inforcing	
(4/3) * As :	0.2097 in2	/ft	Min Stem T&	S Reinf Area	1.344 in2
200bd/fy:200(12)(5.75)/40000:	0.345 in2/f	t	Min Stem T&	S Reinf Area	per ft of stem Height : 0.192 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2	/ft	Horizontal Re	inforcing Opt	ions :
	=======	====	One layer of :	Two lay	ers of :
Required Area :	0.2097 in2	/ft	#4@ 12.50 in	#4@ 2	5.00 in
Provided Area :	0.3 in2/ft		#5@ 19.38 in	#5@ 3	8.75 in
Maximum Area :	1.1684 in2	/ft	#6@ 27.50 in	#6@ 5	5.00 in
Footing Dimensions & S	Strengths	Footing Desi	gn Results	5	
Toe Width=Heel Width=Total Footing Width=Footing Thickness=Key Width=Key Depth=Key Distance from Toe=f'c=2,500 psiFyFooting Concrete Density=Min. As %=Cover @ Top2.00@ E	3.50 ft 0.67 4.17 12.00 in 0.00 in 0.00 in 1.50 ft 40,000 psi 145.00 pcf 0.0018 8tm.= 3.00 in	Factored Pressure Mu': Upward Mu: Downward Mu: Design Actual 1-Way Shear Toe Reinforcing Heel Reinforcing Key Reinforcing Other Acceptable Toe: Not req'd: N Heel: Not req'd: N Key: No key def	Toe = 1,10 = 4,32 = 3,89 = 43 * 3,7 = 40.0 = # 4 @ 10 = # 4 @ 11 = None Sp Sizes & Spa Mu < phi*5*lar	Heel 00 0 28 0 06 0 32 0 74 1.24 00 40.00 6.00 in 500 bec'd 500 cings nbda*sqrt(f'c) nbda*sqrt(f'c) 100	psf ft-# ft-# ∙ psi • psi • Sm
		Min footing T&S I Min footing T&S r If one layer of hor #4@ 9.26 in #5@ 14.35 in #6@ 20.37 in	reinf Area einf Area per rizontal bars:	1.08 foot 0.26 If two I #4@ #5@ #6@	 in2 in2 /ft ayers of horizontal bars: 18.52 in 28.70 in 40.74 in

Summary of Overturning & Resisting Forces & Moments

		OV	ERTURNING	G			R	ESISTING	
Item		Force Ibs	Distance ft	Moment ft-#			Force lbs	Distance ft	Moment ft-#
Heel Active Pressure	=	984.4	2.50	2,460.9	Soil Over Heel	=		4.17	
Surcharge over Heel	=				Sloped Soil Over Hee	=		4.17	
Surcharge Over Toe	=				Surcharge Over Heel	=			
Adjacent Footing Load	=				Adjacent Footing Load	=			
Added Lateral Load	=				Axial Dead Load on Ste	em =			
Load @ Stem Above So	il =				* Axial Live Load on Ster	n =			
	=				Soil Over Toe	=		1.75	
					Surcharge Over Toe	=			
Tetal		004.4	- O T M -	2 460 0	Stem Weight(s)	=	676.7	3.83	2,593.9
Total		964.4	0.1.M.	2,460.9	Earth @ Stem Transitions=				
	=		=		Footing Weight	=	604.2	2.08	1,258.7
Resisting/Overturnin	g Rat	io	=	1.57	Key Weight	=		1.50	
Vertical Loads used f	or So	il Pressure	= 1,280	.8 lbs	Vert. Component	=			
					To	tal =	1 280 8	lbs RM =	3 852 6

Total = 1,280.8 lbs **R.M.=** 3,852.6 * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

RetainPro (c) 1987-2017, Build 11.17.07.27 License : KW-06057394 License To : QUANTUM CONSULTING ENGINEERS	Cantilevered	d Retaining Wall	Code: IBC 2015,ACI 318-14,ACI 530-13
Tilt			
Horizontal Deflection at Top of Wall	due to settlen	nent of soil	
(Deflection due to wall bending not considered)			
Soil Spring Reaction Modulus	250.0	рсі	
Horizontal Defl @ Top of Wall (approximate only	<i>v</i>) 0.037	in	
The above calculation is not valid if the heel soil	bearing pressure	exceeds that of the toe,	
because the wall would then tend to rotate into the	ne retained soil.		